Mathématiques pour la physique et les physiciens!

 $5^{\rm e}$ édition

revue, corrigée et (encore) augmentée.

Walter Appel

ancien élève de l'École normale supérieure de Lyon Agrégé de mathématiques

Docteur ès sciences physiques

Sommaire

	Introduction	18		Algèbre et dualité	
	Notations	20			
2	Convergence et limites L'intégrale selon Lebesgue Calcul intégral	23 67 85	18 19	Bras et Kets Tenseurs Formes différentielles Groupes et représentations	389 419 439 469
	Analyse Complexe			Probabilités	
5 6	Fonctions holomorphes Singularités et résidus Compléments Transformations conformes	99 119 143 159		Introduction aux probabilités Variables aléatoires Théorèmes limites	48: 49: 53:
	Distributions			Annexes & Tables	
	Distributions I Distributions II	185 213	В	Rappels d'analyse et d'algèbre Éléments de calcul différentiel Quelques démonstrations Tables	55′ 569 581 58′
	Analyse de Fourier			Références Table des portraits	593 598
11 12 13 14 15	T. de Fourier des fonctionsT. de Fourier des distributionsTransformation de LaplaceApplications physiques de la TF	245 265 287 305 331 349		Index	599
16	Fonctions de Green	367			

Table des matières

Po	Fourquoi ce livre:		
In	dex d	les notations	20
1	Con	vergences et limites	2
-	1.1	Le problème des limites en physique	2
	1.1	1.1.a Un paradoxe énergétique	2
		1.1.b Roméo, Juliette et les fluides visqueux	2'
			28
	1.0	1.1.d Filtre semi-infini se comportant comme un guide d'onde	30
	1.2	Suites et séries	3
		1.2.a Suites à valeurs dans un espace vectoriel normé	3.
		1.2.b Séries	3
		1.2.c Séries absolument convergentes	3
		1.2.d Espaces complets	3
		1.2.e Suites de Cauchy	3
		1.2.f Séries semi-convergentes	3
		1.2.g Méthodes de point fixe et espaces complets	4
		1.2.h Séries doublement infinies	4
		1.2.i Convergence d'une série à double indice, théorème de Fubini	4
	1.3	Suites et séries de fonctions	4
	1.0	1.3.a Suites de fonctions	4
		1.3.b Application aux suites doubles	4
	- 4	1.3.c Séries de fonctions	4
	1.4	Séries entières	5
		1.4.a Formules de Taylor	5
		1.4.b Une expérience numérique simple	5
		1.4.c Rayon d'une série entière	5
		1.4.d Fonctions analytiques	5°
	1.5	Séries asymptotiques et séries divergentes	5
		1.5.a Séries asymptotiques	5
		1.5.b Séries divergentes et développement asymptotique	5
	Exe	ercices	6
2	L'in	tégrale selon Lebesgue	6
	2.1	L'intégrale selon B. Riemann	6
	2.2	L'intégrale selon H. Lebesgue	70
		2.2.a Principe de la construction (cas positif)	7
		2.2.b Construction (canonique) de l'intégrale de Lebesgue	7
		2.2.c Espaces L ¹	7.
	0.0		7
	2.3	Tribus et mesure de Lebesgue	7
		2.3.a Tribus et boréliens	7
	_	2.3.b Mesure de Lebesgue	7
	Enc	cadré : Mesure de Lebesgue sur l'ensemble des boréliens	79
		2.3.c Tribu de Lebesgue	7
		2.3.d Ensembles négligeables	8
		2.3.e Mesure sur \mathbf{R}^n	8
		2.3.f D'autres intégrales?	8
	Exe	rcices	8
		cadré : Un ensemble non mesurable	8
3	Cal	aul intégnal	8
J	3.1	cul intégral L'intégrabilité en pratique	
	5.1		8
		3.1.a Fonctions étalon	8
		3.1.b Théorèmes de comparaison	86
		3.1.c Intégrale et primitive : le théorème fondamental de l'analyse	86

7	Tran	asformations conformes Transformations conformes	159
	Exer	rcices	157
	Face	6.5.c Méthode générale du col	155
		6.5.b Méthode de la phase stationnaire	154
		6.5.a La méthode de Laplace	153
	6.5	Méthode du col	153
	6.4	Singularités à l'infini	151
	6.3	Prolongements analytiques	150
	6.2	6.2.c Fonctions harmoniques complexes	149
		6.2.b Lien avec les fonctions holomorphes	148
		6.2.a Fonctions harmoniques réelles	147
	6.2	Fonctions harmoniques	147
	c o	6.1.c Fonctions multivaluées; surfaces de Riemann	145
		6.1.b La fonction racine carrée	144
		6.1.a Les logarithmes complexes	
	6.1	Logarithme complexe; fonctions multivaluées	
6		apléments d'analyse complexe	143
			1 40
	Exer	rcices	137
	<i>L</i>	5.3.e Calcul de sommes infinies	134
		5.3.d Intégrales sur le cercle unité d'une fraction rationnelle	133
		5.3.c Intégrales de type Fourier	130
		5.3.b Intégrales sur R d'une fraction rationnelle	129
		5.3.a Lemmes de Jordan	128
	5.3	Applications aux calculs d'intégrales et de sommes	128
	F 0	5.2.g Calcul pratique des résidus	127
		5.2.f Théorème des résidus	125
		5.2.e Exemples de séries de Laurent	124
		5.2.d Séries de Laurent	123
		5.2.c Développement en série de Laurent d'une fonction méromorphe	122
		5.2.b Fonctions méromorphes	121
		5.2.a Introduction	121
	5.2	Fonctions méromorphes, séries de Laurent	121
	5.1	Singularités d'une fonction	119
5		ularités et résidus	119
	Enc	$egin{array}{ccc} cccccccccccccccccccccccccccccccc$	118
	Exer		116
		4.3.f Conséquences, rigidité des fonctions holomorphes	115
		4.3.e Classification des zéros d'une fonction holomorphe	114
		4.3.d Théorème de Green-Riemann	113
		4.3.c Principe du maximum	113
		4.3.b Holomorphie et analyticité	110
	~	4.3.a Formules de Cauchy	109
	4.3	Propriétés des fonctions holomorphes	109
		4.2.c Divers théorèmes de Cauchy	106
		4.2.b Indice d'un chemin	106
		4.2.a Intégration sur des chemins	103
	4.2	Intégrales de contour et théorème de Cauchy	103
		4.1.c Les opérateurs $\partial/\partial z$ et $\partial/\partial \bar{z}$	102
		4.1.a Derivation au sens complexe, conditions de Cauchy-Riemann	100
	4.1	4.1.a Dérivation au sens complexe, conditions de Cauchy-Riemann	100
4	Anai 4.1	lyse complexe — fonctions holomorphes Fonctions holomorphes	99 99
1	Ancl	lysa samplaya — fanctions halamarphas	99
	Exer	rcices	96
	3.6	Produit de convolution	94
	3.5	Changement de variables	93
	3.4	Intégrales doubles	92
		3.3.d Cas où le paramètre est également dans les bornes	91
		3.3.c Holomorphie d'une intégrale à paramètre	91
		3.3.b Dérivation sous le signe somme	90
		3.3.a Continuité d'une intégrale à paramètre	89
	3.3	Intégrales paramétrées	89
	3.2	Permuter une intégrale et une limite (ou une somme)	87

		7.1.a Généralités	59
		7.1.b Théorème de Riemann	61
		1	62
			65
	7.2		67
		1 ,	67
			69
			70
			73
	7.3	v ·	75
	Exe	rcices	79
8	Diet	ributions I	85
o	8.1		85
	0.1		85
			87
	8.2		88
	0.2		90
			91
			92
		11	93
	8.3		93
			93
		9	96
			97
	8.4	Variations sur la distribution de Dirac	99
			99
			99
			01
		- · · · · · · · · · · · · · · · · · · ·	02
			03
			04
	8.5		05
			05
			07
		±	09
		8.5.d Application : laplacien de $1/r$ en trois dimensions	10
9	Dist	ributions II 21	13
ð	9.1		13
	0.1		13
			14
		11	15
			16
			18
	9.2	La convolution	19
		9.2.a Produit tensoriel de deux fonctions	19
			20
			21
			23
			23
			25
			26
			26
			29
	9.3		29
		9	29
			30
			33
			33
	0.4		$\frac{34}{34}$
	9.4	Algebres de comvolution	
	Q F	Résolution d'une équation différentielle avec conditions initiales	
	9.5	Résolution d'une équation différentielle avec conditions initiales	
	9.5	9.5.a Cas d'une équation du premier ordre	36
	9.5	9.5.a Cas d'une équation du premier ordre 23 9.5.b Cas de l'oscillateur harmonique 23	36 37
		9.5.a Cas d'une équation du premier ordre 23 9.5.b Cas de l'oscillateur harmonique 23 9.5.c Autres équations provenant de la physique 23	36

10	Espaces de Hilbert	245
	10.1 Introduction : insuffisance des bases algébriques	245
	10.2 Espaces préhilbertiens	246
	10.2.a Produits scalaires, normes et inégalités	246
	10.2.b Calculs en dimension finie	248
	10.2.c Projection sur un sev de dimension finie	249
	10.2.d Inégalité de Bessel	250
	10.3 Espaces de Hilbert	251
	10.3.a Bases hilbertiennes	251
	10.3.b L'espace ℓ^2	254
	10.3.c L'espace $L^2[0;a]$	255
	10.3.d L'espace $L^2(\mathbf{R})$	256
	10.4 Polynômes orthogonaux	257
	10.4.a Espace L_w^2 , polynômes orthogonaux	257
	10.4.b Zéros des polynômes orthogonaux	258
	10.4.c Formule de récurrence	259
	10.4.d Formule de Rodrigues	259
	10.4.e Polynômes orthogonaux et bases hilbertiennes	260
	10.4.f Polynômes de Legendre, quadratures et développements multipolaires	261
	10.4.g Harmoniques sphériques	263
	Encadré : Procédé d'orthogonalisation et d'orthonormalisation	264
11	Séries de Fourier	265
	11.1 Introduction	265
	11.1.a Analyse et synthèse de Fourier	265
	11.1.b Fourier et l'équation de la chaleur	266
	11.2 Série de Fourier d'une fonction L^2	267
	11.2.a Cadre géométrique (structure hilbertienne)	267
	11.2.b Coefficients de Fourier d'une fonction L ²	268
	11.2.c Extension et propriétés des coefficients de Fourier	270
	11.3 Reconstruire la fonction : synthèse de Fourier	272
	11.3.a Convergence quadratique : Parseval	272
	11.3.b Le théorème de Riesz-Fisher : de L ² à ℓ^2 et retour	274
	11.3.c Convergence ponctuelle: Dirichlet	274
	11.3.d Convergence uniforme: Fejér	276
	11.4 Extensions	279
	11.4.a Fonctions T-périodiques	279
	11.4.b Rapide extension aux distributions	279
	11.4.c Les polynômes trigonométriques et le théorème de Cantor	280
	Exercices	280
12	Transformée de Fourier des fonctions	287
	12.1 Transformée de Fourier d'une fonction de L^1	287
	12.1.a Définition	287
	12.1.b Exemples	288
	12.1.c Espace L^1	289
	12.1.d Propriétés élémentaires	289
	12.1.e Inversion	291
	12.1.f Extension de la formule d'inversion	293
	12.2 Propriétés de la transformation de Fourier	294
	12.2.a Transposition, translation et dilatation	294
	12.2.b Dérivation	294
	12.2.c Fonctions à décroissance rapide	296
	12.3 Transformée de Fourier d'une fonction de L ²	296
	12.3.a Espace $\mathscr S$	297
		298
	12.4 Transformées de Fourier et convolution	299
	12.4.a Formule de convolution	299
	12.4.b Cas particuliers de la formule de convolution	300
	12.5 Autres conventions pour définir la TF	301
	12.6 Tableau synoptique	301
	Exercices	302
	Encadré: Prolongement d'un opérateur linéaire continu	304
10	Transformás de Formier des distributions	90"
13	Transformée de Fourier des distributions 13.1 Définition et propriétés	305
	13.1 Definition et proprietes	305 306
	19.1.a DISHIDHHOHS (CHIDCICCS	$ \omega \cup 0$

		1	307
			308
			309
	10.0		311
	13.2	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	311 311
			313
			313
			314
	13.3		315
	13.4	Application à l'optique physique	317
		13.4.a Lien entre diaphragme et figure de diffraction	317
			318
			319
			321
	10.5		322
		v	324
	Exer	cices	326
14	Tran	sformation de Laplace	331
	14.1		331
	11.1		331
			332
	14.2	Inversion	336
	14.3	Propriétés élémentaires et exemples de transformées de Laplace	337
			337
			337
			337
			339
	111		340
	14.4	<u>.</u>	341 341
			341
			342
			342
			343
	14.5	Applications physiques: problème de Cauchy	344
			344
		14.5.b Un exemple simple	344
		14.5.c Évolution libre du champ électromagnétique	345
	Exer	cices	347
			0.40
19			349 349
	15.1		$349 \\ 351$
	15.2		352
	15.4		356
	15.5		359
			359
			360
	15.6	Fonctions de puissance finie	360
			360
			360
			361
			363
	Exer	cices	365
16	Fone	tions de Green	367
10			367
			368
			369
		<u>*</u>	370
	16.3		372
			373
			376
			376
		16.3 d. Écriture coveriente des fanctions de Crean avenção et retardás	270

		16.3.e Rayonnement	379
	16.4	Équation de la chaleur	380
		16.4.a Cas unidimensionnel : fonction de Green du problème	380
		16.4.b Cas unidimensionnel : conditions initiales	382
		16.4.c Cas tridimensionnel	383
	16.5	Mécanique quantique	384
	16.6	Équation de Klein-Gordon	386
	Exer	rcices	388
17	Bras	s, kets et toutes ces sortes de choses	389
	17.1	Rappels de dimension finie	389
		17.1.a Produit scalaire et théorème de représentation	389
		17.1.b Adjoint	390
		17.1.c Endomorphismes symétriques ou hermitiens	391
	17.2	Kets et Bras	392
		17.2.a Kets $ \psi\rangle \in \mathcal{H}$	392
		17.2.b Bras $\langle \psi \in \mathcal{H}'$	392
		17.2.c Bras généralisés	394
		17.2.d Kets généralisés	395
		17.2.e « $\operatorname{Id} = \sum \varphi_n\rangle \langle \varphi_n $ »	396
		17.2.f Bases généralisées	396
	17.3	Opérateurs linéaires	398
		17.3.a Opérateurs	398
		17.3.b Adjoint	400
		17.3.c Opérateurs bornés, fermés, fermables	401
	17 4	17.3.d Spectre discret et spectre continu	402
	17.4	Opérateurs hermitiens; opérateurs auto-adjoints	404 404
		17.4.a Définitions	404 406
		17.4.c Vecteurs propres généralisés	407
		17.4.d Représentation « matricielle »	408
		17.4.e Résumé des propriétés des opérateurs P et X	411
	Exer	rcices	413
18	Tens		415
18		Tenseurs dans un espace affine	415
18		Tenseurs dans un espace affine	$415 \\ 415$
18		Tenseurs dans un espace affine	415 415 417
18		Tenseurs dans un espace affine 18.1.a Vecteurs	415 415 417 417
18		Tenseurs dans un espace affine 18.1.a Vecteurs	415 415 417 417 420
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 417 417 417 420 420
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 417 417 420 420 421
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces	415 417 417 417 420 420
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 421
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires: tenseurs d'ordre $\binom{0}{2}$	415 417 417 420 420 421 421
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 415 417 417 420 420 421 421 422
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 421 422 423 424
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 417 417 420 420 421 421 422 423 424 426
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 417 417 420 420 421 421 422 423 424 426 427
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 421 423 424 426 427 427
18	18.1	Tenseurs dans un espace affine 18.1.a Vecteurs	415 417 417 420 420 421 421 422 423 424 426 427 427 428
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 421 421 422 423 424 426 427 427 428 430
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415417 417 420 420 421 421 421 422 423 424 426 427 428 430 432
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces ; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires : tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs : tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires : tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique : monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique : élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 432 433
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces ; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires : tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs : tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires : tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique : monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique : élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées 18.5.a Coordonnées curvilignes	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 432 433 433
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 432 433 433 434
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 422 423 424 426 427 427 428 430 433 433 433 434 436
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires: tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs: tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires: tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique: monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique: élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées 18.5.a Coordonnées curvilignes 18.5.b Vecteurs de base 18.5.c Transformation des vecteurs physiques 18.5.d Transformation des formes linéaires	415 417 417 420 421 421 422 423 424 426 427 427 428 430 432 433 434 436 437
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 422 423 424 426 427 427 428 430 433 433 433 434 436
18	18.1 18.2 18.3	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires: tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs: tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires: tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique: monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique: élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées 18.5.a Coordonnées curvilignes 18.5.b Vecteurs de base 18.5.c Transformation des formes linéaires 18.5.e Transformation d'un champ de tenseurs quelconque	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 431 434 436 437 437 437
	18.1 18.2 18.3 18.4 18.5	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 431 434 436 437 437 437
	18.1 18.2 18.3 18.4 18.5	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces ; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires : tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs : tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires : tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique : monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique : élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées 18.5.a Coordonnées curvilignes 18.5.b Vecteurs de base 18.5.c Transformation des vecteurs physiques 18.5.d Transformation d'un champ de tenseurs quelconque 18.5.f Brève conclusion	415 417 417 420 420 421 421 422 423 424 426 427 427 428 430 432 433 434 436 437 438
	18.1 18.2 18.3 18.4 18.5	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires: tenseurs d'ordre $\binom{0}{2}$ 18.2.c Produit tensoriel de deux vecteurs: tenseurs d'ordre $\binom{2}{0}$ 18.2.d Applications linéaires: tenseurs d'ordre $\binom{1}{1}$ 18.2.e Tenseurs d'ordre $\binom{p}{q}$ La métrique: monter et descendre les indices 18.3.a Métrique et pseudo-métrique 18.3.b Dualité naturelle par la métrique 18.3.c Gymnastique: élever et abaisser des indices Opérations sur les tenseurs Changements de coordonnées 18.5.a Coordonnées curvilignes 18.5.b Vecteurs de base 18.5.c Transformation des vecteurs physiques 18.5.d Transformation des formes linéaires 18.5.f Brève conclusion mes différentielles Formes différentielles Formes différentielles de degré 1 19.1.a Définition	415 417 417 420 421 421 422 423 424 426 427 427 427 428 430 431 434 436 437 438 439 439 439 439
	18.1 18.2 18.3 18.4 18.5	Tenseurs dans un espace affine 18.1.a Vecteurs 18.1.b Convention d'Einstein 18.1.c Formes linéaires 18.1.d Applications linéaires 18.1.e Transformations de Lorentz Produit tensoriel d'espaces; tenseurs 18.2.a Existence du produit tensoriel de deux espaces 18.2.b Produit tensoriel de deux formes linéaires:	415 417 417 420 421 421 421 422 423 424 426 427 427 428 430 432 433 434 436 437 438 439 439

19.3.c Intégrer une n -forme sur \mathbf{R}^n	. 450
19.3.d Intégrer une 2-forme sur une 2-surface	. 450
Encadré: Intégration des formes différentielles	. 452
19.3.f Formules de Stokes	. 453
19.3.g Théoreme de Poincare	. 454
19.4 Calcul vectoriel et electromagnetisme classique	. 455 . 455
0 Groupes et représentations de groupes	465
20.2 Le groupe SU(3) et les vecteurs	. 468 . 471
En gadrá : Double composité de SO(2) et tour de magie	. 471
20.4 Sphère de Riemann et spin	. 479
200700000	. 100
1 Introduction aux probabilités	481
21.2 Définitions élémentaires	. 483
2 Variables aléatoires	495
22.1 Qu'est-ce qu'une variable aléatoire?	. 495
22.2 Lois, fonctions de répartition, densité	. 496
22.2.a Loi de probabilité, fonction de répartition	. 496
22.2.d Lor de l'oisson 22.2.e Variables aléatoires (absolument) continues	. 503
22.3.a Espérance : cas discret	. 507
22.3.b Espérance : cas continu et généralisation	. 509
<u>.</u>	
22.4.d Vecteurs aléatoires	. 519
22.4.d Vecteurs aléatoires	. 519 . 519
1	20.1 Groupes, morphismes, représentations 20.1.a Groupes 20.1.b Morphismes 20.1.c Représentations de groupes 20.2 Le groupe $SO(3)$ et les vecteurs 20.3 Le groupe $SU(2)$ et les spineurs Encadré : Double connexité de $SO(3)$ et tour de magie 20.4 Sphère de Riemann et spin Exercices Introduction aux probabilités 21.1 Introduction 21.2 Définitions élémentaires 21.2.a Le mystérieux univers Ω 21.2.b Événements 21.2.c Probabilités 21.2.d Formule de Poincaré 21.3 Probabilités conditionnelles 21.4 Événements indépendants $Exercices$

	22.6	Image d'une variable aléatoire 5 22.6.a Loi et densité 5	522 523 523
		22.6.c Fonction génératrice	524 525 525
	22.7	Somme et produit de variables aléatoires	526 526
	Exer	22.7.b Produit et quotient de variables à densité	$\frac{527}{528}$
23	Théo	prèmes limites en probabilités	35
	23.1	Introduction	535
			37
	23.3	3	$\frac{540}{541}$
	23.4		543
			547
		••	547
			549
	E-man	. 11	550
	Exer	cices	551
		Annexes	
A			557
	A.1	1	557
			557
		1 0	558 559
			660
			660
			660
		8 - 1 - 1 - 1 - 1 - 1	61
		I	661 662
			663
	A.2		664
			664
			65
			65
		11	665 666
			666
	A.3		668
	Exer	$cice$ \ldots	668
В	Élán	nents de calcul différentiel	669
ъ			669
			669
			570
			571
	D 0		571
	B.2		573 573
			573
			573
		B.2.d Théorème des fonctions implicites	574
		B.2.e Une étrange relation : $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$	575
	B.3	Extrema liés et multiplicateurs de Lagrange	576
		B.3.a Le cas libre	576
			576
		1 0 1 0	577
			578 578
	Exer		579

\mathbf{C}	Quelques démonstrations	581
D	Tables Tables des transformées de Fourier et de Laplace Tables des lois usuelles	591
Ré	eférences	593
Lis	ste alphabétique des portraits	598
In	dex	599

Pourquoi ce livre?

UINZE ANS ONT PASSÉ depuis la première édition de ce livre, et de nombreux bons ouvrages de mathématiques pour la physique ont vu le jour—signe que les physiciens ne considèrent plus les mathématiques comme un savoir négligeable, signe également que les mathématiciens se tournent vers leurs collègues physiciens et que le dialogue, une fois repris, est enrichissant pour les deux disciplines.

Si ceux qui voient les mathématiques seulement comme un outil — ce qu'elles sont aussi — sont légion, il est utile de rappeler que, comme le disait Galilée, le livre de la Nature est écrit dans le langage des mathématiques¹. Depuis Galilée et Newton, les plus grands physiciens ont montré que la connaissance mathématique permet de comprendre et d'utiliser plus facilement des notions physiques précises, de les fonder solidement et, surtout, d'en créer de nouvelles². Outre qu'elles assurent la rigueur indispensable à la pratique scientifique, les mathématiques font également partie du langage naturel des physiciens. Même si, dans la pratique quotidienne, la règle de trois et les bases des calculs intégral et différentiel suffisent, une langue plus riche permet une profondeur de pensée incomparable. Einstein a passé un temps considérable à apprendre la géométrie riemanienne pour concevoir la théorie de la relativité générale, Heisenberg s'est formé en algèbre linéaire pour mettre au point sa mécanique des matrices.

En fait, les deux champs de pensée sont parfois tellement peu discernables que la médaille Fields, plus haute récompense dans le domaine des mathématiques, a été décernée en 1990 au physicien Edward WITTEN, qui a utilisé des idées physiques pour (re)démontrer un théorème mathématique.

Comment lire ce livre? — Ou plutôt, comment *ne pas en lire* certains passages. Parce que le lecteur aura envie de se ménager, ou parce que ses goûts le porteront plus naturellement vers certains des domaines exposés, voici un bref aperçu du contenu de l'ouvrage :

• Le premier chapitre traite de convergences, et montre les difficultés qu'on peut éprouver à intervertir des limites dans le cadre de modèles physiques. La nécessité, à un moment donné du raisonnement physique, d'intervertir deux limites mathématiques, n'est pas toujours visible. De nombreux paradoxes apparents en découlent.

^{1. «} La philosophie est inscrite dans ce très vaste livre qui est éternellement ouvert devant nos yeux — je veux dire l'Univers — mais on ne peut pas le lire avant d'avoir appris la langue et d'être familiarisé avec les caractères dans lesquels elle est écrite. Elle est écrite en langue mathématique et ses lettres sont des triangles, des cercles et autres figures géométriques, moyens sans lesquels il est humainement impossible de comprendre un seul mot $[\ldots]$. »

^{2.} Je me bornerai à évoquer Newton (gravitation, calcul différentiel et intégral), Gauss (optique, magnétisme et toutes les mathématiques de l'époque), Hamilton (mécanique, équations différentielles, algèbre), Heaviside (calcul symbolique, traitement du signal), Gibbs (thermodynamique, analyse vectorielle) et bien sûr Einstein... la liste est beaucoup plus longue. Richard Feynman, qui dans son excellent cours [51] présente une vision très « physique » de l'art demandant remarquablement peu de formalisme, maîtrisait assurément des mathématiques élaborées comme en témoigne son travail de recherche.

- Vient ensuite la théorie de l'intégration. On y expose brièvement (chapitre 2) les fondements de la théorie de la mesure et de l'intégrale de Lebesgue; ce chapitre peut être omis en première lecture; le chapitre 3 résume les techniques usuelles du calcul intégral.
- Les chapitres 4 à 7 exposent les bases de la théorie des fonctions d'une variable complexe :
 - le chapitre 4 traite des fonctions holomorphes (c'est-à-dire dérivables au sens complexe) et montre qu'elles sont analytiques. Certaines notions physiques, comme par exemple la *causalité*, sont étroitement liées à l'analyticité de fonctions sur **C** (section 15.4);
 - la « méthode des résidus » (chapitre 5) est un formidable outil de calcul intégral;
 - les fonctions harmoniques (vérifiant $\Delta f = 0$) en deux dimensions sont utilement reliées à la partie réelle d'une fonction holomorphe (chapitre 6);
 - les transformations *conformes* (qui préservent les angles) permettent de simplifier élégamment des problèmes de conditions aux bords en hydrodynamique ou en électromagnétisme (chapitre 7).
- Les chapitres 8 et 9 sont consacrés à la théorie des distributions et à leur utilisation en physique. Ils forment un ensemble relativement indépendant.
- Les chapitres 10 à 14 traitent des espaces de Hilbert, des séries de Fourier et des transformations de Fourier et de Laplace, dont les applications physiques sont innombrables. Le chapitre 15 traite d'applications à la physique. L'analyse complexe est nécessaire à leur lecture.
- Plusieurs problèmes physiques précis sont posés et résolus pas à pas dans le chapitre 16 grâce à la méthode des fonctions de Green. Cette résolution manque en général dans les ouvrages d'électromagnétisme (où une solution est exhibée, sortant tout droit du chapeau) ou de théorie des champs (où la méthode est censée être connue). J'espère combler une lacune en présentant ces calculs (relativement simples) menés de bout en bout, avec les notations des physiciens.
- Le chapitre 17 est une (trop) courte introduction aux notations de Dirac utilisées en mécanique quantique : kets |ψ⟩ et bras ⟨ψ|. On y expose les notions de bases propres généralisées et d'opérateurs auto-adjoints.
- Les chapitres 18 et 19 sont assez largement indépendants du reste de l'ouvrage. Ils concernent le calcul tensoriel et l'utilisation des formes différentielles et ne sont, à chaque fois, qu'une courte introduction au sujet.
- Le chapitre 20 a pour modeste et unique but de relier des notions de topologie et de théorie des groupes à l'idée de *spin* en mécanique quantique.
- La théorie des probabilités (chapitres 21 à 23) est, pour ainsi dire, complètement ignorée dans le cursus de l'étudiant en physique. Pourtant, la connaissance du vocabulaire et des résultats essentiels des probabilités me paraît nécessaire au physicien, qu'il soit théoricien (équations stochastiques, mouvement brownien, mécanique quantique et mécanique statistique s'analysent avec la théorie des probabilités) ou expérimentateur (bruits blancs gaussiens, erreurs de mesure, écarts-type dans une série de données...).
- Enfin, des rappels élémentaires sont donnés en annexe, ainsi que quelques démonstrations intéressantes dont la longueur interdisait qu'on les laissât dans le texte.

De nombreuses applications physiques, utilisant les outils mathématiques mais avec les notations des physiciens, sont présentes dans le texte. On pourra se reporter, dans l'index, à l'entrée « Applications physiques ».

Convergences et limites

Ce premier chapitre, élémentaire, consiste essentiellement en un rapide panorama de la notion de convergence des suites et séries. Le lecteur qui a encore toutes ces notions bien présentes à l'esprit peut directement passer au chapitre suivant.

Cependant, bien que les objets mathématiques exposés ici soient en principe connus, certaines de leurs propriétés sont parfois surprenantes. Nous verrons notamment que, dans le cas d'une série convergente, un simple changement de l'ordre de la sommation peut en changer la somme.

Nous proposons, pour se mettre en appétit, un problème physique dans lequel un processus de passage à la limite (trop rapide) se trouve plus ou moins *caché*. Il conduit à un paradoxe apparent, qui est levé lorsque le processus de limite est explicitement écrit.

1.1 LE PROBLÈME DES LIMITES EN PHYSIQUE

1.1.a Un paradoxe énergétique

Un camion de masse m suit une trajectoire rectiligne, à la vitesse $v = 60 \text{ km} \cdot \text{h}^{-1}$. Pressé par le temps, le camionneur appuie sur le champignon jusqu'à atteindre la vitesse $v' = v + \Delta v = 80 \text{ km} \cdot \text{h}^{-1}$. Au cours de cette accélération, des forces (supposées non dissipatives) s'exercent entre le camion et la Terre, dont le détail est inutile car nous allons raisonner uniquement en termes de bilan énergétique, dans le système {camion + Terre}, supposé isolé.

Le changement de vitesse du camion a un coût énergétique, égal à la différence d'énergie cinétique

$$\Delta E_{\rm c} = \frac{1}{2} m \left[(v + \Delta v)^2 - v^2 \right] \tag{1.1}$$

puisque la Terre, infiniment plus massive que la camion, ne change pas de vitesse. En simplifiant outrageusement le modèle, cette quantité d'énergie se retrouve directement au niveau de la consommation de gazole du camion¹.

$$\ell \, \Delta \mathbf{E}_c = \frac{1}{2} \, \ell m \, (v'^2 - v^2) = \frac{1}{2} \, \ell m \, (3.6)^2 (6400 - 3600) = 0.14 \, \mathrm{L}.$$

^{1.} Illustrons l'expérience, en notant ℓ la quantité de carburant nécessaire pour augmenter l'énergie cinétique du camion ; en tenant compte du pouvoir calorifique du gazole, d'un rendement thermodynamique du moteur de 0,20 et d'une masse de m=10 tonnes, on peut estimer le produit $\ell m=10^{-4}~{\rm L\cdot km^{-2}\cdot h^2}$. Ainsi, pour passer de 60 à 80 kilomètres par heure, la quantité de gazole consommée est

L'intégrale selon Lebesgue

Ce chapitre traite de la théorie des intégrales : on y présente les principes de construction de l'intégrale de Riemann, les limitations de cette construction, puis la théorie de l'intégrale dite « de Lebesgue ». On y évoque brièvement les bases de la théorie de la mesure, utilisée autant dans la théorie de l'intégration que dans celle des probabilités.

L'ensemble des théorèmes et des techniques liés au calcul intégral proprement dit (changement de variable, inversion d'intégrales et de limites ou de sommes) fait l'objet du chapitre suivant : le physicien pressé d'utiliser un outil puissant sans lire tous les détails de la notice peut donc directement passer au chapitre 3.

2.1 L'INTÉGRALE SELON B. RIEMANN

Une méthode pour définir ce qu'est l'intégrale d'une fonction f sur un segment [a;b] est la suivante : on commence par découper le segment en n parties, plus ou moins de la même taille d'environ (b-a)/n, en choisissant des réels

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$
;

puis on « approche » f par une fonction dont la valeur est constante sur chaque petit intervalle, égale à celle de f au début de l'intervalle (figure 2.1 page suivante). La somme des aires des petits rectangles est alors

$$S_n = \sum_{k=1}^{n} (x_k - x_{k-1}) \cdot f(x_{k-1}),$$

et l'on peut espérer que cette valeur va converger lorsque l'on fait tendre n vers l'infini. Bien évidemment, pour que la convergence ait lieu, il suffit que les approximations de f s'améliorent avec l'augmentation de n, c'est-à-dire que les valeurs de f sur un intervalle du style $[x\,;x+\varepsilon]$ soient d'autant plus proches de f(x) que ε est petit. On reconnaît ici la notion de $continuité^1$ de f. C'est exactement ce que dit le théorème de Riemann, que nous préciserons.

^{1.} En réalité, la démonstration du théorème de Riemann repose sur une propriété plus forte, qui est l'uniforme continuité de f; celle-ci découle de la continuité de f sur le compact [a;b].

Calcul intégral

3.1 L'INTÉGRABILITÉ EN PRATIQUE

Le physicien a souvent affaire à de « vraies » fonctions, dont l'étude nécessite des arguments pratiques et pas seulement théoriques. Aussi, il est important de connaître les techniques habituelles permettant de montrer l'intégrabilité de fonctions. La méthode se déroule en deux temps :

- d'abord, trouver des critères pratiques, permettant de décider sur quelles parties de **R** les fonctions usuelles (dites « étalon ») sont intégrables;
- ensuite, établir des théorèmes de comparaison permettant de ramener l'étude d'une fonction compliquée à celle de fonctions étalon.

3.1.a Fonctions étalon

On s'intéresse ici à des fonctions définies sur un intervalle semi-ouvert [a;b[, où b peut être un réel ou $+\infty$ (le cas où l'intervalle est]a;b] est complètement symétrique, et l'on s'y ramène par changement de variable). C'est un cas très général : l'intégrabilité sur \mathbf{R} se ramène alors à l'intégrabilité à la fois sur $[0;+\infty[$ et sur $]-\infty;0]$.

PROPOSITION 3.1 (Intégrabilité d'une fonction positive) Une fonction positive $f:[a;b[\to \mathbb{R}^+ \ et \ admettant \ une \ primitive \ F, \ est \ intégrable \ si \ et \ seulement \ si \ F$ admet une limite finie en b. (De même pour une fonction définie $sur\ [b;c]$.)

Exemple 3.2 La fonction ln est intégrable sur]0;1]. Les fonctions $x\mapsto \mathrm{e}^{-ax}$ sont intégrables sur $[0;+\infty[$ si et seulement si a>0.

Remarque 3.3 L'intégrabilité est une propriété globale, et non locale. Si f est intégrable sur une famille $(A_k)_{k\in\mathbb{N}}$ d'intervalles, elle n'est pas forcément intégrable sur $\bigcup_k A_k$.

PROPOSITION 3.4 (Fonctions de Riemann (t^{\alpha})) La fonction $f_{\alpha}: t \mapsto t^{\alpha}$ est intégrable sur $[1; +\infty[$ si et seulement si $\alpha < -1$. Elle est intégrable sur [0; 1] si et seulement si $\alpha > -1$.

PROPOSITION 3.5 (Fonctions de Bertrand $(t^{\alpha}(\ln t)^{\beta})$) La fonction $t \mapsto t^{\alpha}(\ln t)^{\beta}$ est intégrable sur $[1; +\infty[$ si et seulement si $\alpha < -1$ ou $(\alpha = 1 \text{ et } \beta < -1)$.

Analyse complexe: fonctions holomorphes

Nous consacrons maintenant quatre chapitres à la théorie des fonctions complexes d'une variable complexe.

Dans ce chapitre, on introduit la notion de fonction holomorphe, c'est-à-dire de fonction définie et dérivable sur un ouvert du plan 1 complexe \mathbb{C} ; la propriété la plus remarquable est que l'hypothèse (faible) de dérivabilité entraı̂ne, en violent contraste avec le cas réel, la conséquence (nettement plus forte) d'infinie dérivabilité et même d'analyticité.

Nous étudierons ensuite (chapitre 5) des fonctions présentant des *singularités* en des points isolés et holomorphes par ailleurs; nous verrons que leur étude aura d'importantes applications pour le calcul de nombreuses intégrales et sommes, notamment dans le calcul des transformées de Fourier qui apparaissent en physique.

Les fonctions multivaluées (racine carrée, logarithme complexe...), les fonctions harmoniques et la méthode du col seront présentées au chapitre 6.

Enfin, le chapitre 7 exposera comment des techniques d'analyse conforme permettent de résoudre élégamment certains problèmes de physique à deux dimensions, notamment en électrostatique et en mécanique des fluides incompressibles, aussi bien qu'en théorie de la diffusion et en physique des particules (voir également le chapitre 16).

4.1 FONCTIONS HOLOMORPHES

Alors que la dérivabilité dans \mathbf{R} est un concept relativement peu contraignant², la dérivabilité dans le plan complexe (la « \mathbf{C} -dérivabilité ») entraîne au contraire de très nombreuses propriétés de régularité et rend les fonctions « rigides », dans un sens qui sera précisé bientôt.

^{1.} L'étude du plan complexe doit beaucoup aux travaux de Rafaele Bombelli (1526–1573) qui utilisait l'imaginaire i pour résoudre des équations algébriques (il l'appelait « di meno », c'està-dire « [racine] de moins [un] »), et du mathématicien suisse Jean-Robert Argand (1768–1822) qui popularisa l'interprétation géométrique plane de C. On appelle parfois « plan d'Argand » le plan complexe. C'est également Argand qui introduit le terme de module d'un nombre complexe. La notation « i », remplaçant l'ancienne écriture $\sqrt{-1}$, est due à Euler (cf. page 57).

^{2.} Une fonction f, définie sur un intervalle ouvert I de ${\bf R}$ et à valeurs dans ${\bf R}$ ou ${\bf C}$ peut être dérivable en tout point de I sans que, par exemple, la dérivée soit continue. Ainsi, en posant f(0)=0 et $f(x)=x^2\sin(1/x)$ pour tout x non nul, la fonction f est dérivable en tout point de ${\bf R}$, f'(0)=0 mais f' n'est pas continue en 0 (elle n'y admet pas de limite). Il est possible de construire des fonctions pathologiques, dérivables en tout point, mais dont la dérivée n'est continue nulle part.

Singularités et résidus

Certaines fonctions ne sont holomorphes que sur un ouvert privé d'un ou plusieurs points, comme la fonction $z\mapsto 1/z$, qui l'est sur $\mathbb{C}\setminus\{0\}$. Ces fonctions revêtent une grande importance, les points en lesquels elles présentent une $singularit\acute{e}$ ayant généralement une signification physique¹.

Nous présentons ici une étude des singularités d'une fonction, ainsi que la généralisation du développement en série entière (valable sur un disque) d'une fonction sous la forme d'une somme doublement infinie

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n z^n = \dots + \frac{a_{-2}}{z^2} + \frac{a_{-1}}{z} + a_0 + a_1 z + a_2 z^2 + \dots$$

valable quant à lui sur une couronne. Nous expliquons ensuite le théorème des résidus et ses applications à de nombreux calculs.

5.1 SINGULARITÉS D'UNE FONCTION

Considérons une fonction complexe f, définie et holomorphe sur $\Omega \setminus \{a\}$, ouvert privé d'un point. Les raisons qui font que f n'est pas holomorphe sur Ω sont a priori de plusieurs types :

- f pourrait être continue² en a sans y être dérivable;
- f pourrait présenter une discontinuité en a, tout en restant bornée au voisinage de a;
- f pourrait ne pas être bornée en a.

En réalité, les deux premiers cas ne se produisent jamais — la continuité en a entraı̂ne l'holomorphie et le fait d'être bornée implique la continuité en a.

^{1.} En théorie de la réponse linéaire, la fonction de réponse va être, selon les conventions, disons analytique dans le demi-plan complexe supérieur, mais va présenter des pôles dans le demi-plan inférieur [6]. Ces pôles correspondent à des énergies de différents modes. En physique des particules, ils seront caractéristiques de la masse d'une excitation (particule) ainsi que de sa durée de vie.

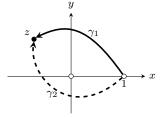
^{2.} Plus précisément : pourrait admettre un prolongement par continuité en a.

Compléments d'analyse complexe

6.1 LOGARITHME COMPLEXE; FONCTIONS MULTIVALUÉES

6.1.a Les logarithmes complexes

On cherche à étendre la fonction logarithme réelle $x \mapsto \ln x$, définie sur \mathbf{R}^{+*} , à la partie la plus large possible du plan complexe.


L'idée la plus naturelle est de revenir à l'une des définitions possibles du logarithme réel : c'est la primitive de $x\mapsto 1/x$ qui s'annule en x=1. Muni de l'intégration complexe, on pose donc

$$\forall z \in \mathbf{C}^* \qquad \mathcal{L}(z) \stackrel{\text{def.}}{=} \int_{\gamma(z)} \frac{\mathrm{d}w}{w},$$
 (6.1)

où $\gamma(z)$ est un chemin du plan complexe reliant 1 à z et ne passant pas par 0 (pour que l'intégrale soit bien définie). L'équation (6.1) définit-elle bien une fonction? La réponse est « oui » si tout choix du chemin γ conduit à une même valeur de L(z), et « non » dans le cas contraire.

Ci-contre, on représente deux chemins γ_1 et γ_2 reliant 1 à z, mais passant d'un côté et de l'autre de l'origine. Si l'on note γ le chemin composé de γ_1 et de $-\gamma_2$, l'intégrale de 1/w sur γ est égale à $2i\pi$ fois le résidu en 0 (qui vaut 1) : $\int_{\gamma} \mathrm{d}w/w = 2i\pi$, donc

$$\int_{\gamma_1} \frac{\mathrm{d}w}{w} = \int_{\gamma_2}^{\gamma_2} \frac{\mathrm{d}w}{w} + 2\mathrm{i}\pi.$$

En conséquence, il n'est pas possible de définir de logarithme complexe sur le plan privé de l'origine $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$.

Pour éviter ce genre de désagréments, privons le plan d'une de mi-droite, par exemple ${\bf R}^-$:

Transformations conformes

Les transformations conformes sont des changements de variable w=f(z) dans le plan complexe, donnés par une fonction f holomorphe; un domaine Ω du plan est alors transformé en un domaine $\Omega'=f(\Omega)$. Ces transformations vérifient deux propriétés intéressantes : conservation des angles (utile en cartographie) et préservation des fonctions harmoniques (c'est-à-dire de laplacien nul). La résolution d'un problème de type $\Delta \varphi=0$, muni de conditions sur le bord $\partial \Omega$, est alors changé en un problème similaire, avec des conditions sur le nouveau bord $\partial \Omega'$, qui peut être nettement plus simple.

Nous étudierons quelques exemples de transformations conformes connues, avant d'aborder des applications à deux domaines de la physique où sont recherchées des fonctions harmoniques : électrostatique et hydrodynamique.

7.1 TRANSFORMATIONS CONFORMES

7.1.a Généralités

Considérons un changement de variables $f:(x,y)\mapsto (u,v)=(u(x,y),v(x,y))$ dans le plan \mathbf{R}^2 identifié à \mathbf{C} . Ce changement ne mérite réellement son nom que si f est localement bijective (on dit aussi **localement bi-univoque**); c'est le cas si f est de classe \mathscr{C}^1 et que son jacobien ne s'annule pas (celui de la transformation inverse, parfois plus facile à calculer, est également non nul):

$$\left| \frac{\mathrm{D}(u,v)}{\mathrm{D}(x,y)} \right| = \left| \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \right| \neq 0 \quad \text{et} \quad \left| \frac{\mathrm{D}(x,y)}{\mathrm{D}(u,v)} \right| = \left| \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \right| \neq 0.$$

THÉORÈME 7.1 Lors d'un changement de variable complexe

$$z = x + iy \longmapsto w = f(z) = u + iv,$$

si f est holomorphe, alors le jacobien de la transformation vaut

$$J_f(z) = \left| \frac{D(u, v)}{D(x, y)} \right| = \left| f'(z) \right|^2.$$

Distributions I

Les chapitres 8 et 9 sont consacrés aux distributions qui font partie du paysage familier au mathématicien et sont l'objet de recherches pointues. Pourtant, les distributions ont été introduites afin de résoudre des problèmes d'origine physique : distributions de charges, équations différentielles menant à des solutions discontinues (ondes de choc), mécanique quantique, etc.

Dans ce chapitre, on définit les distributions et leur dérivation, ce qui nous amènera à revoir la notion de dérivation d'une fonction discontinue.

8.1 APPROCHE PHYSIQUE

8.1.a Problème des distributions de charges

En électrostatique classique, une particule ponctuelle de charge électrique q située en un point \mathbf{r}_0 de l'espace ordinaire \mathbf{R}^3 produit, en tout point \mathbf{r} de $\mathbf{R}^3 \setminus \{\mathbf{r}_0\}$, un champ électrostatique :

$$\mathbf{E}(\boldsymbol{r}) = \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{r} - \boldsymbol{r}_0}{\|\boldsymbol{r} - \boldsymbol{r}_0\|^3}.$$

Lorsque plusieurs charges (q_i, \mathbf{r}_i) sont présentes, la linéarité des équations de Maxwell nous assure la superposition des champs créés par chacune des charges :

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} q_i \frac{\mathbf{r} - \mathbf{r}_i}{\|\mathbf{r} - \mathbf{r}_i\|^3}.$$
 (*)

Cependant, lorsqu'on travaille dans le domaine macroscopique, il est parfois préférable de décrire la distribution des charges sous forme continue; on la modélise alors par une fonction $\rho: \mathbf{R}^3 \to \mathbf{R}$ qui, à chaque point, associe la densité de charge électrique en ce point. L'interprétation de la fonction ρ est la suivante : si $\mathbf{r}_0 \in \mathbf{R}^3$ et si $\mathrm{d}^3\mathbf{r} = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ est un volume élémentaire situé autour de \mathbf{r}_0 , alors

$$\rho(\mathbf{r}_0) dx dy dz$$

représente la charge totale contenue dans dx dy dz.

Distributions II

Dans ce chapitre, nous introduisons une distribution de grande utilité en physique : la distribution « valeur principale de Cauchy », afin notamment d'établir la célèbre formule, que l'on rencontre aussi bien en optique, en mécanique statistique, en mécanique quantique qu'en théorie des champs :

$$\frac{1}{x \pm \mathrm{i}\varepsilon} = \mathrm{vp}\,\frac{1}{x} \mp \mathrm{i}\pi\delta.$$

Puis nous étendons la notion de convolution aux distributions. Nous nous intéressons ensuite à la topologie des espaces de distributions et nous introduisons la notion d'algèbre de convolution, qui nous mènera à celle de fonction de Green. Enfin, nous montrons comment traiter dans un même élan la résolution d'une équation différentielle et l'inclusion des conditions initiales dans la solution.

9.1 VALEUR PRINCIPALE DE CAUCHY

9.1.a Définition

On rappelle que la fonction $x\mapsto 1/x$ ne définit pas une distribution régulière, car elle n'est pas intégrable au voisinage de x=0. En revanche, on peut définir, pour $\varphi\in\mathscr{D}$, la quantité

$$\operatorname{vp} \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x} \, \mathrm{d}x \stackrel{\text{\tiny def.}}{=} \lim_{\varepsilon \to 0^+} \int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x,$$

ce qui nous permet de définir la distribution vp(1/x), par

$$\left\langle \operatorname{vp} \frac{1}{x}, \varphi \right\rangle = \operatorname{vp} \int_{-\infty}^{+\infty} \frac{\varphi(x)}{x} \, \mathrm{d}x \stackrel{\text{\tiny def.}}{=} \lim_{\varepsilon \to 0^+} \left[\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} \, \mathrm{d}x \right].$$

On généralise ainsi cette définition :

DÉFINITION 9.1 Soit $x_0 \in \mathbf{R}$. On définit la distribution valeur principale de Cauchy vp $\frac{1}{x-x_0}$ par son action sur toute fonction-test $\varphi \in \mathscr{D}$:

$$\left\langle \operatorname{vp} \frac{1}{x-x_0}, \varphi \right\rangle = \operatorname{vp} \int \frac{\varphi(x)}{x-x_0} \, \mathrm{d}x \stackrel{\text{\tiny def.}}{=} \lim_{\varepsilon \to 0^+} \int_{|x-x_0| > \varepsilon} \frac{\varphi(x)}{x-x_0} \, \mathrm{d}x.$$

Espaces de Hilbert

10.1 INTRODUCTION: INSUFFISANCE DES BASES ALGÉBRIQUES

Afin de montrer l'insuffisance des espaces vectoriels munis des bases habituelles (qu'on appelle **bases algébriques**), voici un petit problème : on note $E = \mathbf{R}^{\mathbf{N}}$ l'ensemble des suites à valeurs réelles. E est manifestement un espace vectoriel, de dimension infinie. Or, la théorie générale de l'algèbre linéaire nous enseigne que 1 :

THÉORÈME 10.1 Tout espace vectoriel possède des bases algébriques.

La question est alors:

Pouvez-vous donner une base de E?

(Avant de lire la suite, faites un essai!)

Vous avez peut-être pensé que la famille

$$\Big\{(1,0,0,0,\ldots),\quad (0,1,0,0,\ldots),\quad (0,0,1,0,\ldots),\quad \ldots\Big\} \tag{*}$$

est une base algébrique... Mais ce n'est pas vrai, car elle n'est pas $g\acute{e}n\acute{e}ratrice$; pour le montrer, rappelons d'abord quelques définitions.

DÉFINITION 10.2 (Base algébrique) Soit I un ensemble d'indices (pouvant être fini, dénombrable ou non dénombrable). Le **sous-espace vectoriel engendré** par la famille de vecteurs $(x_i)_{i\in I}$ d'un **K**-espace vectoriel E, que l'on note Vect $\{x_i \; ; \; i\in I\}$ est l'ensemble des combinaisons linéaires (*finies*, par définition)

$$\text{Vect}\,\big\{x_i\;;\;i\in\mathcal{I}\big\}\stackrel{\text{def.}}{=} \Big\{x=\sum_{i\in\mathcal{I}'}a_i\,x_i\;;\;\mathcal{I}'\subset\mathcal{I}\;\text{fini et}\;a_i\in\mathbf{K}\Big\}.$$

Si $\text{Vect}\{x_i \; ; \; i \in I\} = E$, on dit que la famille $(x_i)_{i \in I}$ est **génératrice**. Elle est dite **libre** si les seules combinaisons linéaires (finies) nulles sont celles dont tous les coefficients sont nuls. Enfin, elle est appelée **base algébrique** si elle est à la fois libre et génératrice.

^{1.} Mais le théorème qui l'affirme ne donne pas de moyen de construire une telle base. Pire, il utilise une version équivalente à l'axiome du choix, appelée **lemme de Zorn** et dont l'énoncé, fort gracieux (« Soit Z un ensemble ordonné non vide tel que toute partie totalement ordonnée possède au moins un majorant dans Z. Alors il existe dans Z au moins un élément maximal. ») met cependant la puce à l'oreille du physicien : on ne pourra pas en tirer grand-chose de constructif!

Séries de Fourier

11.1 INTRODUCTION

11.1.a Analyse et synthèse de Fourier

On doit à Joseph FOURIER l'idée de décomposer toute fonction 2π -périodique en une somme de fonctions sinusoïdales $t \mapsto e^{int}$, pour des valeurs entières de n. Si une telle fonction f se décompose sous la forme

$$f(t) = \sum_{k=-\infty}^{+\infty} c_k e^{ikt}, \qquad (*)$$

il est aisé de « deviner » comment s'obtiennent les coefficients. En effet, un calcul élémentaire donne, pour tous entiers n et k:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-int} e^{ikt} dt = \delta_{n,k}. \tag{**}$$

Avec en tête la linéarité de l'intégrale, on peut raisonnablement espérer obtenir

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt.$$
 (***)

Bien sûr, la linéarité ne suffit pas : une intégration terme à terme (c'est-à-dire un échange \sum / \int) a été effectuée et il faut la justifier.

L'objet de la théorie de Fourier est double :

- étudier le lien¹ entre une fonction 2π -périodique et ses coefficients de Fourier c_n : c'est la partie analyse de Fourier;
- étudier s'il est possible de reconstruire la fonction f à partir de la connaissance de ses coefficients c_n : c'est la partie synthèse de Fourier.

^{1.} Par exemple, nous verrons que plus la fonction f est régulière, plus la suite des coefficients converge rapidement vers 0.

Transformée de Fourier des fonctions

Nous introduisons dans ce chapitre la transformation intégrale appelée « transformée de Fourier », qui généralise au cas des fonctions $f: \mathbf{R} \to \mathbf{C}$ quelconques l'analyse de Fourier des fonctions périodiques.

On commence par définir la transformée de Fourier pour les fonctions intégrables au sens de Lebesgue (éléments de L^1). Un des inconvénients de la transformée de Fourier ainsi définie est qu'elle ne laisse pas l'espace L^1 stable. On étendra donc cette définition aux fonctions de carré sommable (éléments de L^2), qui possèdent une interprétation énergétique en physique. L'espace L^2 étant stable, toute fonction de carré sommable possédera une transformée de Fourier de carré sommable.

La transformation de Fourier a indéniablement été la révolution mathématique la plus importante depuis la création du calcul différentiel et intégral, tant elle s'est révélée indispensable dans de nombreux domaines des mathématiques, de la physique et de l'ingénierie.

12.1 TRANSFORMÉE DE FOURIER D'UNE FONCTION DE L¹

Dans ce paragraphe, on commence par définir et établir les principales propriétés de la transformée de Fourier d'une fonction intégrable.

12.1.a Définition

DÉFINITION 12.1 Soit f une fonction, réelle ou complexe, d'une variable réelle. On appelle **transformée de Fourier** (ou **spectre**) de f(t), si elle existe, la fonction \hat{f} de la variable réelle ν définie par :

$$\hat{f}(\nu) \stackrel{\text{def.}}{=} \int_{-\infty}^{+\infty} f(t) e^{-2i\pi\nu t} dt.$$

On écrit alors symboliquement :

$$\hat{f} = \mathscr{F}[f]$$
 ou $\hat{f}(\nu) = \mathscr{F}[f(t)].$

Transformée de Fourier des distributions

13.1 DÉFINITION ET PROPRIÉTÉS

On cherche maintenant à définir la notion de transformée de Fourier au sens des distributions. L'intérêt est double :

- 1. Définir la transformée de Fourier des distributions, comme δ ou III.
- Espérer étendre la transformation de Fourier à une plus grande classe de fonctions; notamment, les fonctions qui ne sont ni dans L¹(R), ni dans L²(R) mais qui interviennent constamment en physique, comme la fonction de Heaviside.

Afin de définir la transformée de Fourier d'une distribution, on commence, comme on en a maintenant l'habitude, par se restreindre au cas, particulier, d'une distribution régulière. On considère donc une fonction localement sommable. Et là... on se souvient que, par malheur, « être localement sommable » n'est pas, pour une fonction, une condition suffisante pour posséder une transformée de Fourier.

Restreignons-nous davantage et considérons une fonction $f \in L^1$. Elle est intégrable et, par voie de conséquence, localement intégrable ; aussi définit-elle une distribution régulière (également notée f). Sa transformée de Fourier \hat{f} est continue, donc localement intégrable : elle définit, elle aussi, une distribution \hat{f} , dont l'action sur une fonction-test φ est

$$\langle \hat{f}, \varphi \rangle = \int_{-\infty}^{+\infty} \hat{f}(t) \, \varphi(t) \, \mathrm{d}t = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) \, \mathrm{e}^{-2\mathrm{i}\pi x t} \, \mathrm{d}x \right) \, \varphi(t) \, \mathrm{d}t$$

soit, en utilisant le théorème de Fubini pour intervertir les deux intégrales (ce qui est permis puisque f est supposée intégrable et que φ l'est nécessairement) :

$$\langle \hat{f}, \varphi \rangle = \int_{-\infty}^{+\infty} f(x) \left(\int_{-\infty}^{+\infty} e^{-2i\pi x t} \varphi(t) dt \right) dx = \int_{-\infty}^{+\infty} f(x) \, \widehat{\varphi}(x) dx = \langle f, \widehat{\varphi} \rangle.$$

Ce calcul justifie la définition suivante :

Transformation de Laplace

La transformation de Laplace unilatérale est une transformation intégrale, qui est une sorte de généralisation de la transformation de Fourier pour les fonctions définies sur $[0;+\infty[$. Son intérêt est double :

- Elle évite l'emploi des distributions dans le cas où une fonction n'admet pas de transformée de Fourier au sens des fonctions;
- 2. Elle peut résoudre des problèmes décrits par des équations différentielles en prenant en compte les conditions initiales, c'est-à-dire qu'elle permet de s'attaquer à un problème de Cauchy; un exemple physique est donné, celui de l'évolution libre du champ électromagnétique.

14.1 DÉFINITION ET SOMMABILITÉ

Dans ce chapitre, nous nous intéresserons à une transformation intégrale effectuée sur les fonctions f qui sont nulles pour les valeurs négatives de la variable : f(t) = 0 pour tout t < 0, aucune condition de continuité en 0 n'étant exigée. Par exemple, la fonction $t \mapsto H(t) \cos t$.

Il est cependant fréquent que, dans la littérature concernant les transformées de Laplace, le facteur H(t) soit omis ; nous nous conformerons à cet usage, sauf en cas d'ambiguïté, et nous parlerons donc de la fonction $t\mapsto\cos t$, en sous-entendant que cette définition est restreinte aux valeurs positives de t.

DÉFINITION 14.1 On appelle fonction causale toute fonction $t \mapsto f(t)$ nulle pour les valeurs négatives de son argument :

$$f(t) = 0$$
 pour tout $t < 0$.

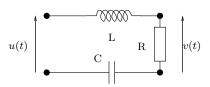
14.1.a Définition

DÉFINITION 14.2 Si f(t) est une fonction réelle ou complexe, localement sommable, de la variable réelle t, on appelle **transformée de Laplace** (unilatérale) **de** f(t) la fonction complexe notée $\mathcal{L}f(p)$, ou F(p), de variable complexe p, définie par :

$$\mathcal{L}f(p) \stackrel{\text{def.}}{=} \int_{0}^{+\infty} f(t) e^{-pt} dt.$$

Applications physiques de la transformée de Fourier

15.1 JUSTIFICATION DE L'ANALYSE EN RÉGIME SINUSOÏDAL


Lors de l'étude d'un système linéaire¹, une méthode courante est la suivante :

- 1) On considère les situations où le signal est purement monochromatique.
- 2) La réponse à un signal quelconque est la somme des réponses aux différentes fréquences qui composent ce signal.

On justifie ensuite l'analyse sinusoïdale en disant

« Si l'on impose en entrée un signal sinusoïdal de pulsation ω donnée, alors le signal de sortie est sinusoïdal de même mulsation ω . »

Pour fixer les idées, considérons l'exemple très scolaire d'un circuit RLC. Supposons que le signal d'entrée soit la tension $t\mapsto u(t)$ aux bornes du circuit total et le signal de sortie la tension $t\mapsto v(t)$ aux bornes de la résistance (c'est-à-dire, à un facteur R près, l'intensité parcourant le circuit).

En établissant l'équation différentielle liant u et v, on obtient l'égalité (valable au sens des distributions) :

$$u = \left[\frac{L}{R}\delta' + \frac{1}{RC}H + \delta\right] * v = D * v,$$

^{1.} Par exemple, un système mécanique formé de ressorts et de masselottes, ou bien un circuit électrique comportant des composants linéaires comme des résistances, des condensateurs ou des bobines, ou encore le champ électromagnétique libre, régi par les équations de Maxwell...

Fonctions de Green

Ce chapitre n'est pas réellement un cours sur les fonctions de Green et l'on n'y introduit pas vraiment d'objets ou de concepts nouveaux par rapport à ce qui précède. On montre plutôt, au travers de quelques exemples physiques simples, comment les différentes techniques déjà étudiées (transformations de Fourier et de Laplace, transformation conforme, convolution, dérivation au sens des distributions) permettent de résoudre simplement certains problèmes physiques liés à des équations différentielles linéaires.

Le premier problème est lié à la propagation des ondes électromagnétiques dans le vide. On y établit ab initio la fonction de Green du d'alembertien ainsi que la formule des potentiels retardés créés par une distribution quelconque de sources.

Le second problème est la résolution de l'équation de la chaleur, soit en utilisant des transformées de Fourier, soit en utilisant celles de Laplace.

Enfin, on verra comment les fonctions de Green apparaissent naturellement en mécanique quantique.

16.1 GÉNÉRALITÉS SUR LES FONCTIONS DE GREEN

Considérons un système linéaire de signal d'entrée E et de signal de sortie S. Celui-ci est décrit par une équation du type¹

$$\Phi(S) = E$$
.

Ce que nous appelons ici « signal d'entrée » et « signal de sortie » peuvent être de nature très diverse, comme:

- des signaux électriques dans un circuit (par exemple l'alimentation en entrée et la réponse d'un composant en sortie);
- des charges et courants (entrée) et des champs électromagnétiques (sortie);
- des sources de chaleur (entrée) et une température (sortie);
- des forces (entrée) et une position ou une vitesse (sortie).

L'opérateur Φ est linéaire et continu. Il peut dépendre de variables comme le temps ou la position. Dans ce chapitre, nous nous intéresserons au cas où il est invariant par translation (temporelle ou spatiale)². La plupart du temps, Φ est un opérateur différentiel (comme un laplacien, un d'alembertien, etc.).

^{1.} Et non pas $S = \Phi(E)$, ce qui serait beaucoup plus simple. En théorie de la diffusion de la chaleur, par exemple, le « signal de sortie » est la température $\mathbf{T}(\boldsymbol{x},t)$, tandis que celui d'« entrée » est la source de chaleur $\rho(\boldsymbol{x},t)$. Ils sont reliés par une équation de la forme $c\frac{\partial \mathbf{T}}{\partial t} - \mu \triangle \mathbf{T} = \rho$. 2. Un exemple non invariant par translation a été traité ponctuellement au paragraphe 7.2.b

page 169.

Bras, kets et toutes ces sortes de choses

17.1 RAPPELS DE DIMENSION FINIE

Dans cette section, on considère un espace vectoriel E, sur le corps **K** des réels ou des complexes, de dimension finie n, muni d'un produit scalaire $(\cdot|\cdot)$ et d'une base orthonormée $\mathcal{B}=(e_1,e_2,\ldots,e_n)$. On rappelle quelques propriétés élémentaires concernant le produit scalaire, les bases orthonormées et l'adjoint d'un endomorphisme; ces résultats seront à rapprocher de ceux qui seront donnés pour la dimension infinie, et qui sont sensiblement différents.

17.1.a Produit scalaire et théorème de représentation

À chaque vecteur $a \in \mathcal{E},$ on peut canoniquement associer une forme linéaire φ_a définie par

$$\varphi_a \colon \to \mathbf{K}$$

$$x \longmapsto (a|x).$$

Lorsque E est de dimension finie, l'application $a \mapsto \varphi_a$ est même un isomorphisme d'espaces vectoriels entre E et son dual E*:

THÉORÈME 17.1 (Théorème de représentation) L'espace E est isomorphe à son espace dual E*. En particulier, pour toute forme linéaire φ sur E, il existe un unique $a \in E$ tel que $\varphi = \varphi_a$, c'est-à-dire

$$\forall x \in \mathbf{E}$$
 $\varphi(x) = (a|x)$.

DÉMONSTRATION « ABSTRAITE » : Les espaces E et E* étant de même dimension finie, et l'application $\Phi: a \mapsto \varphi_a$ étant linéaire, il suffit de prouver qu'elle est injective pour conclure que c'est un isomorphisme. Soit $a \in \operatorname{Ker} \Phi$, c'est-à-dire un vecteur tel que (a|x) = 0 pour tout vecteur $x \in E$. En particulier, (a|a) = 0 donc a = 0, ce qui achève la démonstration.

Remarque 17.2 (Démonstration effective : représentation matricielle de a et de φ_a) Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base orthonormée de E. Notons M la matrice représentative de

Tenseurs

Je suis le tensoriel, le vieux, l'inconsommé Le printemps d'Arabie à la tourbe abonnie Ma simple étole est molle et mon lynx consterné Pose le solen noué de la mélanémie.

El Desdonado, variations sur S + 7 par Raymond Queneau d'après El Desdichado de Gérard de Nerval [89].

Dans ce chapitre, peu de détails seront donnés sur la manipulation pratique des tenseurs, sur les recettes de calcul usuelles, gymnastique d'indices, contractions, reconnaissance du caractère tensoriel, etc. De nombreux et excellents ouvrages [9,37,51,76,80,118] établissent ces règles. (Et font souvent beaucoup plus!)

Ici, on se concentrera sur la construction mathématique des tenseurs, afin de compléter la vision « calculatoire » du physicien. Ce chapitre est donc déconseillé aux physiciens qui voudraient faire leurs tous premiers pas avec les tenseurs. Il est plutôt écrit pour ceux qui ont commencé à manipuler des tenseurs et voudraient comprendre ce qui se cache derrière.

Ce chapitre étant purement introductif, nous ne considérerons que des tenseurs dans des espaces plats. Il ne sera donc pas question de transport parallèle, de fibrés, de connexions ou de symboles de Christoffel. Le lecteur désireux d'en savoir davantage est renvoyé aux classiques de géométrie différentielle, comme Cartan [27].

18.1 TENSEURS DANS UN ESPACE AFFINE

Si \mathbf{K} est le corps \mathbf{R} ou \mathbf{C} , on identifiera $\mathbf{E} = \mathbf{K}^n$, espace vectoriel de dimension n (généralement 4), à un espace affine $\mathscr E$ de même dimension. On munira \mathbf{E} d'une base $\mathcal{B} \stackrel{\text{def.}}{=} (\mathbf{e}_{\mu})_{\mu} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$. (On adopte ici la convention typographique de Misner et al. [86], qui différencient les quadrivecteurs \mathbf{e} des vecteurs tridimensionnels \mathbf{e} .)

18.1.a Vecteurs

Soit \mathbf{u} un vecteur de \mathscr{E} , c'est-à-dire un élément de \mathbf{K}^n . Il existe alors une décomposition unique de \mathbf{u} comme combinaison linéaire des vecteurs de \mathcal{B} :

Formes différentielles

Dans tout ce chapitre, E est un **R**-espace vectoriel de dimension finie n, que l'on identifie avec \mathbf{R}^n au moyen d'une base $\mathcal{B} = (e_1, e_2, \dots, e_n)$. Les cordonnées dans cette base sont notées génériquement x_1, x_2, \dots, x_n .

19.1 FORMES DIFFÉRENTIELLES DE DEGRÉ 1

19.1.a Définition

Soit $F: \mathbb{R}^n \to \mathbb{R}$ une fonction réelle sur $E = \mathbb{R}^n$, que l'on suppose différentiable en tout point¹. La différentielle de F en un point a est la forme linéaire, notée dF_a ou dF(a), valant

$$dF(\boldsymbol{a}) = \sum_{k=1}^{n} \frac{\partial F}{\partial x_k}(\boldsymbol{a}) dx_k$$

qui à un vecteur $\boldsymbol{h}=(h_1,h_2,\ldots,h_n)$ associe le nombre 2

$$dF(\boldsymbol{a}) \cdot \boldsymbol{h} = \sum_{k=1}^{n} \frac{\partial F}{\partial x_k}(\boldsymbol{a}) h_k.$$

La différentielle de F est l'application

$$\mathrm{dF}\colon \ \mathbf{R}^n \longrightarrow \mathscr{L}(\mathbf{R}^n, \mathbf{R}),$$
$$\mathbf{a} \longmapsto \mathrm{dF}(\mathbf{a}).$$

Supposons F de classe \mathscr{C}^{k+1} ; alors les fonctions $f_i = \partial F/\partial x_i$ sont de classe \mathscr{C}^k , et la fonction dF est un exemple fondamental de ce qu'on appelle une forme différentielle de degré 1 et de classe \mathscr{C}^k .

Plus généralement, une forme différentielle de degré 1, ou 1-forme différentielle, de classe \mathscr{C}^k est une application

$$\omega \colon \ \mathrm{U} \subset \mathbf{R}^n \longrightarrow \mathscr{L}(\mathbf{R}^n, \mathbf{R}),$$

$$\mathbf{x} \longmapsto \omega(\mathbf{x})$$

^{1.} Des rappels de calcul différentiel élémentaire sont disponibles dans l'annexe B page 569, et d'autres sur les formes linéaires dans l'annexe A page 557.

^{2.} On utilise ici la convention $\varphi \cdot h$ pour indiquer le résultat de l'application d'une forme φ sur un vecteur h, que l'on écrit plus communément $\varphi(h)$: en effet, [dF(a)](h) est bien moins lisible que $dF(a) \cdot h$.

Groupes et représentations de groupes

20.1 GROUPES, MORPHISMES, REPRÉSENTATIONS

20.1.a Groupes

DÉFINITION 20.1 Un **groupe multiplicatif** (G, \cdot) est un ensemble G muni d'une loi interne (G, \cdot) et tel que

- «·» est associative sur G: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$;
- (G,·) admet un **élément neutre** e, c'est-à-dire un élément de G tel que pour tout $g \in G$, on a $e \cdot g = g \cdot e = g$;
- tout élément de G est **symétrisable**, c'est-à-dire que pour tout $g \in G$, il existe un élément $h \in G$ tel que $g \cdot h = h \cdot g = e$. Ce symétrisé est unique : on le note g^{-1} et on l'appelle **inverse** de g.

Un groupe (G, \cdot) est dit **abélien** ou commutatif si sa loi est commutative, c'est-à-dire si $q \cdot h = h \cdot q$ pour tous $q, h \in G$.

Remarque 20.2 (Groupes additifs) Dans de nombreux groupes abéliens, la loi interne est assimilable à une addition : on convient alors de la noter * + *, le symétrique d'un élément g étant noté -g et le neutre * 0 *.

C'est le cas notamment des groupes $(\mathbf{Z}, +)$ et $(\mathbf{Z}/n\mathbf{Z}, +)$.

Exemple 20.3 (Groupe linéaire) L'ensemble $GL_n(\mathbf{R})$ des matrices carrées inversibles d'ordre n, muni du produit de matrices, est un groupe ; il est non abélien dès que $n \ge 2$.

Exemple 20.4 (Groupe de symétries) L'ensemble des opérations de symétrie qui laissent invariante la configuration d'équilibre d'une molécule, muni de la loi de composition des applications, est un groupe.

Exemple 20.5 (Rotations vectorielles du plan) L'ensemble des rotations de l'espace vectoriel \mathbb{R}^2 (rotations laissant l'origine invariante) est un groupe commutatif.

Exemple 20.6 Considérons l'espace orienté $E = \mathbf{R}^3$ muni de sa structure euclidienne; notons G l'ensemble des rotations (transformations actives) de E de centre 0. Alors, (G, \circ) est un groupe

Introduction aux probabilités

La statistique est la science qui permet de prouver que 99,99 % des hommes ont un nombre de jambes supérieur à la moyenne.

La théorie des probabilités a pour objet de modéliser mathématiquement la notion, difficile à appréhender par ailleurs, de hasard; une confrontation avec l'expérience permet ensuite d'apprécier la pertinence de cette modélisation.

Celle-ci recouvre, en général, une connaissance incomplète d'un système. Cette incomplétude peut être fondamentale (par exemple, dans le cas de la désintégration d'une particule), ou effective (dans le cas du lancer d'un dé ou d'une pièce¹, ou de l'étude du mouvement brownien d'une poussière dans un fluide, il « suffirait » de connaître position et vitesse initiales de chacune des particules du système pour que le hasard disparaisse).

La théorie des probabilités s'intéresse à ce qu'il est possible de dire d'un événement lorsqu'une « expérience » est réalisée un grand nombre de fois.

Elle ne s'occupe pas seulement d'événements « aléatoires » (dans les deux sens précédents); elle permet aussi de *décrire* de façon simple des distributions compliquées, comme dans la théorie du signal ou dans l'imagerie, en dégageant des notions de statistique.

Enfin, elle permet de tenir des discours sur tel ou tel événement et, le cas échéant, de faire prendre des vessies pour des lanternes. Bien que cette pratique soit de celles que l'on ne saurait conseiller, il est utile de connaître un minimum ces techniques, aussi bien pour la vie scientifique (certains résultats sont présentés comme probants², alors qu'une analyse statistique les donne au contraire comme très certainement inintéressants), que pour la vie de tous les jours d'un citoyen responsable.

Ce chapitre a pour but d'introduire les notions élémentaires de la théorie des probabilités, ainsi que le vocabulaire particulier qui est utilisé : événement, probabilité conditionnelle, indépendance.

Le chapitre 22 présentera les variables aléatoires et les concepts associés : loi, espérance, écart-type, corrélation.

Enfin, le chapitre 23 présentera la notion de convergence des variables aléatoires, avec deux théorèmes fondamentaux : la loi des grands nombres et le théorème central limite. Des applications à l'approximation des variables aléatoires en seront déduites.

^{1.} Dans le cas du tirage à *pile* ou *face*, le mathématicien et ancien prestidigitateur Persi DIACONIS a montré qu'il existait un biais dans le résultat du tirage (voir [41]), biais qu'un prestidigitateur peut bien sûr exploiter.

^{2.} C'est le tristement célèbre cas de la « mémoire de l'eau », voir [24] pour une analyse détaillée.

Variables aléatoires

Hasard?

Mets que font les fripons pour les sots qui le mangent.

Point de hasard!

Victor Hugo Ruy Blas, acte IV, scène VII.

22.1 QU'EST-CE QU'UNE VARIABLE ALÉATOIRE ?

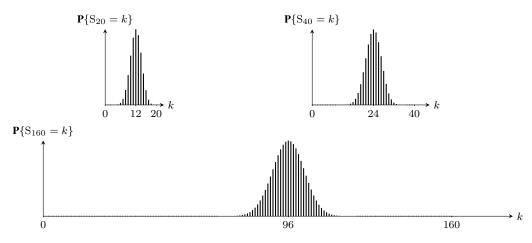
L'univers Ω peut être un ensemble vaste, et difficilement descriptible (par exemple, si chaque élément ω est la description complète des positions et vitesses de 10^{23} particules et si Ω est l'ensemble de tous les ω possibles). Or, très souvent, nous ne nous intéressons qu'à une donnée numérique issue de ω , par exemple, la pression ou l'entropie associée à cette description d'un gaz¹. Notons X cette donnée; puisqu'elle dépend de la réalisation particulière ω du hasard, X est en réalité une application de Ω dans \mathbf{R} . On définit donc une variable aléatoire réelle comme une application $\mathbf{X}: \Omega \to \mathbf{R}$ — et l'histoire pourrait s'arrêter là.

Il faut hélas travailler un peu plus pour obtenir un fondement théorique sain. En effet, nous aurons à nous poser des questions du genre : « quelle est la probabilité que la variable X prenne ses valeurs dans l'intervalle I ? » ou, ce qui revient au même, « quelle est la probabilité de l'ensemble des ω tels que $X(\omega) \in I$? ». Ce dernier ensemble n'est autre que $X^{-1}(I)$. Si l'on veut pouvoir donner une probabilité associée à chaque intervalle I, il convient donc que chaque image réciproque $X^{-1}(I)$ fasse partie de l'ensemble $\mathfrak T$ sur lequel la probabilité $\mathbf P$ est définie. Afin de pouvoir utiliser des propriétés de σ -additivité, il faudra imposer cette condition, non seulement aux intervalles, mais également à toutes les parties de $\mathbf R$ engendrées par ces intervalles : l'ensemble $\mathfrak B(\mathbf R)$ des boréliens de $\mathbf R$.

^{1.} C'est un point capital : contrairement à ce qui se passe en Analyse, où la structure de l'ensemble de départ est cruciale (pour définir la notion de continuité, ou celle de dérivabilité par exemple), avec les variables aléatoires, seul le résultat compte!

^{2.} Rappelons que, si f est une application d'un ensemble E vers un ensemble F, et si B est une partie de F, alors on définit $f^{-1}(B) = \{x \in E \; ; \; f(x) \in B\}$. Il n'existe a priori pas d'application f^{-1} (puisque f n'est pas supposée bijective) ; mais la notation $f^{-1}(B)$ est correctement définie pour toute partie B de E.

Théorèmes limites en probabilités


Guildenstern (Flips a coin.) : The law of averages, if I have got this right, means that if six monkeys were thrown up in the air for long enough they would land on their tails about as often as they would land on their —

 ${\tt Rosencrantz: Heads.} \ (\textit{He picks up the coin.})$

Tom Stoppard, Rosencrantz & Guildenstern are dead [111]

23.1 INTRODUCTION

Une simple expérience de pensée comme une succession infinie de tirages à pile ou face nous met en présence de résultats de type théorèmes limites. Ci-dessous, nous représentons l'histogramme de la loi du nombre de pile obtenu lors de n tirages : $S_n = X_1 + X_2 + \cdots + X_n$, où X_k est la variable valant 1 si le k-ième tirage amène pile et 0 sinon (la probabilité d'obtenir pile étant ici p = 0,6); les valeurs successives de n sont 20, 40 et 160.

Index

Les numéros de page en gras renvoient aux optique......57, 61, 216, 240, 317-323, 326, 356, 361, 365 définitions principales, ceux en italique à des exercices. Les noms en petites capitales renoscillateur harmonique.....237, 368-372 voient aux indications biographiques. relativité......204, 221, 239 Symboles thermodynamique 96, 178, 179, (adjoint)......390 380-384, 578 Approximation * (opérateur de Hodge) 459 binomiale \rightarrow normale......547 $Poisson \rightarrow normale \dots 549$ Arrêt (point d'—)......171 Atomique (masse —)......487 □......332 Auto-adjoint endomorphisme — 391, 568 $\square \dots 372$ opérateur —......404 □......486 Autocorrélation......359-363 $\langle \psi | \dots 254, 392$ $\langle x| \dots 394$ $\langle p | \dots 395$ $\mathfrak{B}(\mathbf{R})$77 Banach (théorème du point fixe de —) 41 $\otimes \dots \dots 220,421$ Banach-Tarski (paradoxe de —) 80 Base duale......418 Abel (transformation d'—)......62 hilbertienne......252 Bayes (formule de —)......490, **491** Bernoulli Jacques......541 Bernoulli (loi, épreuve de —)......499 Bessel Airy (intégrale d'—) 60 Algèbre Bienaymé-Tchebychev (inég. de —)......537 Binomiale (loi —) 499, 591 approximation par une loi normale......547 par une loi de Poisson 503 Alternées (critère des séries —)......62 Analytique Bolzano (théorème de — -Weierstrass) . . . 561 fonction $-\dots 54,110$ Borel Émile......78 ${\it prolongement} -- 150$ Bortkiewicz Władisław......502 Application contractante 41 Applications physiques Bra......254, **392** électromagnétisme 204, 217, 345, Branche......146 351, 365, 372–380, 457, 458, 461 Branchement électrostatique... 157, 169, 226, 326, 456 hydrodynamique......27, 171, 179, 180 $m\'ecanique \dots \dots 23-26$

mécanique quantique . . . 28, 56, 254, 352,

413, 384-414, 471, 479

С	Conditionnelle	
<u>C</u> 151	densité —	15
Cantelli (lemme de Borel- —) 493	loi —5	14
Cantor (théorème d'unicité de —)280	probabilité —	88
Caractéristique (fonction —)	Conditions de Cauchy-Riemann 100, 10	
Casorati (th. de — -Weierstrass)	Conformément équivalents	
Cauchy Augustin-Louis	Conforme (transformation —)	
Cauchy	Connexité	
conditions de — -Riemann 100, 103	double — 4'	
critère de —	simple —	
formule de —	Conservatif (champ de force —)	42
inégalité de — -Schwarz	Continuité	_
loi de —	absolue50	
problème de —236, 344	de la convolution	
produit de —225	correction de —	
suite de —	de la dérivation23	
théorème de — $103, 106, 107, 582$	d'une fonctionnelle	
théorème de — -Lipschitz 63	monotone décroissante	
valeur principale de $-\dots 193,194,213$	sous le signe ∫	89
Causal(e)	Contour	
fonction —	de Bromwich	36
système —	d'intégration	04
Causalité521	Contractante (application —)	41
Cavendish (expérience de —)461	Contractile (ouvert —)48	54
CD (échantillonnage)364	Contraction d'indices4	
Centrée (variable aléatoire —) 511	Contravariantes (coordonnées)	
Central limite (théorème —)	Convergence	
Chaleur	commutative	39
équation de la —	dans \mathscr{D}	
noyau de la —	dominée (théorème de —)	
Champ	en loi	
•		
électromagnétique	en probabilité	
évolution libre du —	faible	
fonction de Green du —	monotone	
transverse/longitudinal351	normale	
Chance	presque sûre5	
Changement de coordonnées433	quadratique 2'	
Charge (densité de —)	rayon de —	
Chemin	dans \mathscr{S}	
—s équivalents	semi-convergence39, 50	80
indice d'un —	simple	
intégrale sur un $-\dots 104,440$	d'une série de fonctions	
Choix (axiome du —)	d'une série de Fourier2'	75
Christoffel Elwin	d'une suite de fonctions	45
Cigogne (effet —)	stochastique54	40
Cinétique relativiste	d'une suite dans un EVN	33
Classe \mathscr{S}	uniforme	
Classique (limite —)	d'une série de fonctions	49
Clothoïde	d'une série de Fourier2'	
Coalitions (lemme des —)	d'une suite double	
Coefficient	d'une suite de fonctions	
de corrélation	$\operatorname{vers} \pm \infty$	
—s de Fourier	Convexité	
d'une distribution	Convolution	
—s de structure	algèbre de —	
Cohérence	continuité de la —23	
fonction de —		
	discrète	20
spatiale	de distributions	
temporelle	de fonctions	
Col	de fonctions causales	31
méthode du —	régularisation par —	
Commutatif (groupe —)	et transformée de Fourier29	99
Commutativement convergente	Coordonnées	_
Compact	contravariantes416, 43	
Compact Disc (échantillonnage) 364	covariantes	
Complémentaire485	curvilignes	
Complet	Cornu (spirale de —)13	37
espace —	Corps noir (rayonnement)	96
espace mesuré —	Corrélation	
système — d'événements 486	coefficient de —	16
Compléter un EVN70	fonction de —	
Composées (formule des probabilités —) . 489	Correction de continuité54	48

Coulomb (potentiel de —) 170	Dirac
laplacien du —	distribution de — 191, 200–204
transformée de Fourier du — 311	distribution de — $3D191$
Coupure	distribution linéique de — 201
Courant (densité de —)	distribution surfacique de —200
Courbe	masse de —
Covariance	peigne de —
Covariantes (coordonnées)418	suite de fonctions de $-\dots$ 88, 176, 230
Crible (formule du —) 488	transformées de Fourier de $\delta \dots 308$
Critère	Dirac Paul
de Cauchy 37 , 38	Direct (produit)
de Rayleigh	Dirichlet Gustav Lejeune 176
des séries alternées 62	Dirichlet
Crochet de dualité	fonction de —
Croissance lente (fonction à —) 306	intégrale de —
Curvilignes (coordonnées —) 433	noyau de —
Cyclique voir Groupe cyclique	problème de —
	sur le disque177
	sur un demi-plan
D	sur une bande
$\mathscr{D}'_{+},\mathscr{D}'_{-}$	théorème de —
d (dérivée extérieure)	Dispersion (relation de —) 216
	Distribution
dx	dérivée
	dilatée195
$\mathrm{d}z,\mathrm{d}\bar{z}$	de Dirac191
$\partial/\partial z, \partial/\partial \bar{z}$	de Heaviside199
d'alembertien	de Maxwell-Boltzmann 579
de Moivre	régularisation d'une —
théorème de — -Laplace	régulière
Debye Petrus	singulière191
Debye (écran, potentiel de —)326	support d'une —
Décorrélées (variables aléatoires —) 518	tempérée
Décroissance rapide (fonction à —)296	translatée
Degré d'une représentation	transposée
Demi-vie	Dominée
Dense (partie —)	suite — par une autre560
Densité	théorème de convergence —
de charge et de courant204	Domination
$\text{de } \mathscr{D} \text{ dans } \mathscr{D}' \dots \dots 234$	Doppler (effet —)
de probabilité	Dual
conditionnelle	base —e564
conjointe	d'un ev
marginale 514, 515	de Hodge
$de \mathcal{S} dans L^2 \dots 298$	Dualité métrique
spectrale	Durée de vie
Dérivabilité sous le signe somme 90, 91	
Dérivation (continuité de la —) 230	E
Dérivée	&' 234
d'une distribution	$\varepsilon(\sigma)$ 446
extérieure	$\varepsilon^{\alpha\beta'\mu\nu}$ 460
d'une fonction discontinue205	E*
Développement	Écart-type
multipolaire	Échantillonnage
perturbatif	Écran total330
en série asymptotique	Effet
en série entière	cigogne521
Différentielle	Doppler
d'une fonction	Égalité
forme —	de Bienaymé
Difféomorphisme	de Parseval
\mathscr{C}^1	de Parseval-Plancherel298
Différentiable	de polarisation
Différentielle	de Taylor-Lagrange
Diffraction	Égorov (théorème d'—)
Diffuse	Einstein Albert
mesure —	Einstein (conventions d'—)417, 440, 447
probabilité —	Electromagnétisme 217, 326, 345, 372–380
Diffusion et marche aléatoire551	Électrostatique
Dilatée d'une distribution	Elément
Dini Ulisse	de matrice
Dini (théorèmes de —)	propre402

Endomorphisme voir Opérateur	Fejér
auto-adjoint391, 568	noyau de —
normal	sommes de —
symétrique391	théorème de —
Énergie (d'un signal)359	
	Fermé
Engendrée (tribu —)	forme différentielle —e
Ensemble	opérateur —
mesurable	Fermable (opérateur —)401
négligeable80	Feynman Richard388
des parties d'un ensemble76	Fidèle (représentation —) 467
résolvant	Fischer (théorème de Riesz-—) 75, 76, 274
Entière (fonction —)	Fixe (point —)
Équation	Fonction
—s de Maxwell	Γ d'Euler
de la chaleur	analytique
de Klein-Gordon	anti-holomorphe103
de Poisson	d'autocorrélation359, 360
de Schrödinger	de Bessel
Equivalent	caractéristique524
chemins —s104, 441	causale331, 358
normes —es	de cohérence
ouverts conformément —s 161	à croissance lente306
suites —es560	à décroissance rapide 296 , 306
Espérance	« — » de Dirac
Espace	de Dirichlet
des distributions	entière
des épreuves	étagée
de Hilbert	d'état
mesurable	Γ d'Euler
mesuré	génératrice
de Minkowski427	de Green 169, 235, 368 , 367–388
préhilbertien	du d'alembertien
probabilisé	de l'éq. de la chaleur 197 , 238,
probabilisable	380 , 381
séparable252	de l'oscillateur harmonique . 237, 368
de Schwartz 297 , 306	—s de Haar
tangent	harmonique
-test188	de Heaviside
Espace vectoriel	hermitienne
sev engendré245	holomorphe
libre586	indicatrice72
normé557	intégrable
normé complet	d'intercorrélation
Espérance	d'intercorrélation 360 localement sommable 190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80
$ \begin{array}{cccc} \text{Espérance} & & & 528 \\ & \text{de } \varphi(\mathbf{X}) & & 507,510 \\ & \text{de } \varphi(\mathbf{X},\mathbf{Y}) & & 514 \\ \text{Essentielle (singularité} -) & & 120 \\ \text{Essentiellement auto-adjoint} & & 410 \\ \end{array} $	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223,288 de puissance finie 360 régularisée d'une 275 de répartition 497
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) .86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème de l'analyse) 86 Forme
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème de l'analyse) 86 Forme coordonnée 418
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Forme de l'analyse) 86 Forme coordonnée 418 différentielle 439, 449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème de l'analyse) 86 Forme coordonnée 418
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Forme de l'analyse) 86 Forme coordonnée 418 différentielle 439, 449
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fordamental (théorème — de l'analyse) 86 Forme 418 coordonnée 418 différentielle 439,449 exacte 442,454
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 442, 454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143-146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445 k-forme extérieure 446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445 k-forme extérieure 446 linéaire 417, 564
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143-146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme coordonnée 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 564 2-forme extérieure 445 k-forme extérieure 446 linéaire 417, 564 polaire 248
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143-146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme coordonnée 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445 k-forme extérieure 446 linéaire 417, 564 polaire 248 volume 447
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fordamental (théorème — de l'analyse) .86 Forme coordonnée 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445 k-forme extérieure 446 linéaire 417, 564 polaire 248 volume 447 Formule
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fondamental (théorème — de l'analyse) 86 Forme coordonnée 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 445 &-forme extérieure 446 linéaire 417, 564 polaire 248 volume 447 Formule de Bayes 490, 491
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d'intercorrélation 360 localement sommable 190 méromorphe 122 mesurable 80 multivaluée 143–146 porte 223, 288 de puissance finie 360 régularisée d'une 275 de répartition 497 conjointe 513, 519 sommable 73 -test 188 de transfert 350 Fonctionnelle 188 Fordamental (théorème — de l'analyse) .86 Forme coordonnée 418 différentielle 439, 449 exacte 442, 454 fermée 442, 454 extérieure 1-forme extérieure 564 2-forme extérieure 445 k-forme extérieure 446 linéaire 417, 564 polaire 248 volume 447 Formule

de Green	Н
de Green-Ostrogradski	H(x)
de Green-Riemann453	Haar (fonctions de —)
de Gutzmer	Hankel (transformée de —)326
de Kœnig510	Harmonique
de Poincaré	—s sphériques
des probabilités composées 489	fonction —
des probabilités totales	Heaviside Oliver
sommatoire de Poisson281, 313	distribution de —
de Stirling	fonction de —80, 19 9
de Stokes453	transformée de Fourier de H309
de Taylor51	transformée de Laplace de H 333
de Taylor-Lagrange	Heisenberg (rel. d'incertitude d'—) 355, 413
de Taylor-Young	Helmholtz (théorème de —)
de transfert	Hermite (polynômes d'—)
Fourier	endomorphisme —391
calcul de TF par résidus130	fonction —ne
coefficients de —	opérateur —404
d'une distribution 279	produit —246
série de —	Hessienne
somme partielle de —	Hilbert David
transformée de —	$egin{array}{ll} { m Hilbert} & { m espace \ de$
dans \mathbf{R}^n	transformée de —
d'une distribution	Hilbertienne (base —)
en sinus ou cosinus 302	Hodge (opérateur de —)
d'une fonction	Holomorphe (fonction —) 101
inverse 291 , 293, 297, 298, 311	Holomorphie (théorème d'—)91
Fréquence plasma	Homéomorphisme
Fraunhofer (approximation de —)	Homotopie
Fubini Guido	1
Fubini (théorème de — pour les séries) 44	Identité de polarisation248
Fubini-Lebesgue (théorème de —)	Image
Fubini-Tonelli (théorème de —)	Implicites (th. des fonctions —)
	Impulsion
	incertitude sur l'—354
	moyenne
G	$egin{array}{cccccccccccccccccccccccccccccccccccc$
g427	Impulsionnelle (réponse)
$\widehat{\mathfrak{g}}$	Incertitude
$g^{\mu\nu}$	relation d'—355, 415
Gamma (fonction Γ d'Euler)	sur la position / l'impulsion 354
Gauss Carl	Indépendance
Gauss (loi de —) 488, 506 , 544 , 592	d'événements
Gaussienne	de deux variables aléatoires519
Gelfand (triplet de —)	Indicatrice (fonction —)
Générateurs infinitésimaux 470 Génératrice (fonction —) 525	Indice d'un chemin
Géométrique (loi —)	Indices
Gibbs Josiah	contractés
Gibbs (phénomène de —)	contravariants
Gram (matrice de —)	covariants
Grands nombres	de Bessel
loi faible des —	de Bienaymé-Tchebychev 537
Green George	de Cauchy-Schwarz 247 , 516
Green	d'Heisenberg
fonction de — 169, 235, 368 , 367–388	de Markov538
formule de —209	de Minkowski247 de Taylor-Lagrange51
formule de — -Ostrogradski 209, 456	Inertie (loi de Sylvester)427
formule de — -Riemann	Intégrable (fonction —)
théorème de $-$	Intégrale
Groupe	sur un chemin
à un paramètre	de Dirichlet
abélien	d'une forme différentielle
cyclique voir Permutations	de Fresnel
des rotations	de Riemann
Cutzmer (formule de —) 69	

Intercorrélation	Limite voir Convergence
Intérieur d'une partie d'un EVN	classique28
Inverse de convolution	simple
Inversion	d'une série49
théorème d'— globale 571	d'une suite
théorème d'— locale	uniforme
de la T. Fourier 291, 293, 297, 298, 311	d'une série49
de la T. Laplace	d'une suite
Itération de Picard	Linéaire (forme —)
rectation de l'icard	L [∞]
	Liouville Joseph
J	Liouville (théorème de —)
$J_0(x), J_1(x)$ (fonctions de Bessel) 323	
Jacobien	Lipschitz (théorème de Cauchy-—)63
Jacobienne	Localement fini
Jauge (fixation de —)	Localement sommable (fonction —) 190
JORDAN Camille	Logarithme complexe
Jordan (lemmes de —)	Loi
Jouкovsкі Nicolaї	de Bernoulli
Joukovski (transformation de —)162	binomiale
	approx. par une loi de Poisson503
K	de Cauchy 511 , <i>551</i> , <i>591</i>
Ket254, 392	conditionnelle
Khintchine (th. de Wiener- —)	convergence en —
Kirchhoff (intégrale de —)	exponentielle 505
Klein-Gordon (équation de —)	lien avec la loi de Poisson529
Kœnig (formule de —)	faible des grands nombres 541
Kolmogorov Andrei Nikolaïevitch486	forte des grands nombres 542
Kramers-Kronig	gaussienne
Kronecker Leopold	géométrique500
Kronecker (symbole de —)	marginale
ittoheeker (symbole de)125	normale
	table de $\mathcal{N}(0,1)$
L and	des petits nombres 502
L [∞]	de Poisson 502 , <i>551</i> , 591
$\Lambda^{*2}(E) \dots \dots 445$	approximation gaussienne549
$\Lambda_2^{*k}(E) \dots \dots$	comme limite de loi binomiale 503
$L^2(\mathbf{R})$	lien avec l'exponentielle529
$L^{2}[0;2\pi]267$	du premier succès 500
$L^{2}[0;a]$	sans mémoire
$L^1 \dots$	de Stefan
ℓ^2	uniforme
Lagrange	Longitudinaux (champs —)
formule de Taylor- —	Longueur d'un chemin
multiplicateurs de — 576	Lorentzienne
Lagrangien de Proca 461	20101021011110
Laguerre (polynômes de —) 260	
Landau (notations de —)	
Laplace Pierre Simon de	M
Laplace	$\mathcal{M}^{1,3}$
méthode de —153	Marche aléatoire
théorème de de Moivre- — 547	Marginale (loi —)
transformée de — $331, 331-347$	Markov (inégalité de —)
Laurent (série de —)	Masse de Dirac (atomique)487
Lebesgue Henri73	Matrice
Lebesgue	élément de —390, 408, 564
intégrale de — 73	de Gram
mesure de —	hessienne576
théorème de —	jacobienne93
Legendre	orthogonale
polynômes associés de —	de Pauli
polynômes de —	représentative
Lemme	de rotation
de Borel-Cantelli	unitaire
des coalitions	wronskienne369
de Jordan	Maximum (principe du —)
de Riemann-Lebesgue	Maxwell (équations de —)
de Zorn	Maxwell-Boltzmann (distribution de —)579
Lente (fonction à croissance —)	Médiane
Levi (théorème de Beppo —)	Mémoire (loi sans —)
	Méromorphe (fonction)
Levi-Civita (tenseur de —)	Mesurable
Libre	
espace vectoriel —	ensemble —
famille —	espace —

Mesure78	Ordre d'un pôle
diffuse79	Original33:
extérieure de Lebesgue79	Orthogonal (système —) 248
de Lebesgue	Orthogonale (matrice —)468
Méthode	Orthogonalité
du col153	Orthonormé (système —) 248
de Laplace	Oscillateur harmonique
de la phase stationnaire 154	Ostrogradski (formule de Green- —) . 209, 450
de variation de la constante	Ouvert558
Métrique427	—s conformément équivalents 16
de Minkowski427	contractile
Minkowski Hermann428	étoilé
Minkowski	—s homéomorphes
inégalité de —247	
pseudo-métrique de — 427	p
Mode	P (opérateur impulsion)399
DE MOIVRE Abraham483	\$
Moment	Π (fonction porte)
Monotone	$\mathscr{P}(\lambda)$
continuité — décroissante 82, 487	p.p. (presque partout)80
théorème de convergence — 88	Paradoxe
Monte-Carlo	de Banach-Tarski
Mouvement brownien	dans un circuit électrique30
Moyenne (théorème de la —)	en mécanique classique
Multiplicateurs de Lagrange576	en mécanique quantique418
Multipolaire (développement —) 262, 263	en optique
Multivaluée (fonction —)145	téléphonique528
	Paratonnerres
N	Pari de Pascal
$\mathcal{N}\left(m\;;\;\sigma^2\right)\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	Parseval
$\mathfrak{N}(x), \mathfrak{n}(x) \dots \dots$	égalité de —
Négligeable	égalité de — -Plancherel298
partie —	Partie finie pf $(1/x^k)$
suite — devant une autre560	Partie positive (négative)
Neumann (problème de —)171	Pas (d'une subdivision)68
Non monochromatique (signal —)	Pascal (pari de —)
Normé (espace vectoriel —)	Pauli (matrices de —)475
Normal (endomorphisme —)	Peigne de Dirac
Normale	Percolation
convergence —	Père Lachaise
loi —	Permutation
table de $\mathcal{N}(0,1)$	Permutationsvoir Symétrique
Norme	Permuter
—s équivalentes	∫ et lim 8′
hermitienne	\int et \sum
linéaire562	les termes d'une série
$\operatorname{subordonn\'ee} \dots $	Pétanque
Noyau	Petits nombres (loi des —) 502
de la chaleur 197, 238, 380, 381	$pf(1/x^k)$
de Dirichlet277, 280	Phase stationnaire (méthode de la —) 154
de Fejér	Phénomène
d'un morphisme de groupes467	de Gibbs276, 315
de Poisson	de Stokes5
de Schrödinger	Picard (itération de —) 63
	Poincaré Henri45
0	Poincaré
$O(\alpha_n), o(\alpha_n) \dots \dots$	formule de —488
O(3)	théorème de —
Observable	Point
Ondelettes256, 324	d'accumulation
Opérateur	de branchement
auto-adjoint	d'arrêt
borné (continu)401	fixe
de la chaleur	théorème du — fixe
fermé401	Poisson
fermable401	formule sommatoire de — 281, 31
hermitien (symétrique) 404	loi de — 502 , <i>551</i> , 59
de Hodge459	approximation gaussienne54
impulsion	comme limite de loi binomiale 503
position	lien avec l'exponentielle529
Optique physique	noyau de —
cohérence	Poisson Denis
intégrale de Kirchhoff240, 346	Polaire (forme — d'une égalité) 248

Polarisation (identités de —)	Q
Pôle	Quadrature (intégration par —)261
à l'infini	Quadrivecteur204
ordre d'un —123	Quasi-complet (système —) 491
simple123	
Polynômes d'Hermite	R
,	$\overline{\mathbf{R}}^+$
de Laguerre	Réduite (variable aléatoire —)
associés de Legendre263	Résonance
de Tchebychev	Ramanujan Srinivasa
Porte (fonction —)	Rapide (fonction à décroissance —) 296
Position	Rayleigh (critère de —) 323 Rayon de convergence 53
incertitude sur la —	Réalisation d'un événement
moyenne	Régularisation d'une distribution233
représentation —	Régularisée d'une fonction
Potentiel	Relation
de Coulomb211, 311	de dispersion (Kramers-K.)216
de Debye326	de fermeture396
de Yukawa	d'incertitude
Préhilbertien (espace —)	Relativité restreinte204, 221, 239
Presque partout	Répartition (fonction de —)
Presque sûrement	Repliement du spectre
Primitive86	Réponse impulsionnelle227
Principe	Représentation
d'incertitude	d'une forme linéaire389, 566
Probabilité	fidèle
—s composées (formule des —) 489	d'un groupe
conditionnelle	impulsion
diffuse	matricielle
—s totales (formule des —)491	position
Problème	triviale
de Cauchy	à l'infini
de Dirichlet	applications
de Neumann171	calcul pratique
Proca (lagrangien de —)	théorème des résidus
Produit	Riemann
de Cauchy225	formule de Green- —
de convolution	intégrale de —
de distributions224	sommes de —
de fonctions	sphère de —
de fonctions causales	surface de —
et T. Fourier	théorème de —
direct (tensoriel)	RIEMANN Bernhard145
de distributions	Riemann-Lebesgue (lemme de —)270, 290
de fonctions	Riesz (théorème de —)
extérieur	Riesz-Fischer (théorème de —) 75, 76, 274
scalaire	Rodrigues (formule de —)
tensoriel	
de distributions	S
d'espaces vectoriels421,586	SO(3)
de fonctions	\$\mathcal{S}\tag{297}306
d'une forme et d'un vecteur424	\mathscr{S} (opérateur de classe —)
de formes	\mathcal{S}' 306
d'un vecteur et d'une forme424	SU(2)
de vecteurs	\mathfrak{S}_n
Projection orthogonale249, 409	σ -additivité
Prolongement	σ _X
analytique150	σ -algèbre
d'un opérateur continu 304	Salaire de la peur (le —)
d'un opérateur de \mathcal{H} 398	produit —
Propagateurvoir Fonction de Green	pseudo-produit —
de Feynman	Schmidt Erhard
Pseudo-métrique	Schrödinger (équation de —)
Puissance finie (fonctions de —)360	Schwartz Laurent
Puissance moyenne d'une fonction360	Schwartz (espace de —)
Pupille circulaire	Schwarz Hermann
	Schwarz (théorème de —)450, 573
	Schwarz-Christoffel (transf. de —)165

Semi-convergente (série —)	Т
Semi-norme	$\mathscr{T}(\mathscr{C})$ 486
Séparable (espace de Hilbert —)	Tangent (espace —) 573 Taylor Brook 50
calcul de — par résidus134	Taylor
entière53	formules de —51
de Fourier	reste de —
somme partielle251	série de —
de Laurent	Taylor-Lagrange (formule de —)51
	TCHEBYCHEV Pafnouti
semi-convergente	
de Taylor	Tchebychev inégalité de —537
sgn (distribution « signe »)	
Shannon (théorème de —)	polynômes de —
$\operatorname{Si}(x)$	Tempérée (distribution —)
Signal analytique	*
· · · · · · · · · · · · · · · · · · ·	Tenseur
d'énergie finie	de Faraday
imaginaire	
non monochromatique	Tensoriel (produit —) . <i>voir</i> Produit tensoriel Théorème
Signature	
Simple	de Banach
connexité	de Beppo Levi
courbe —	de Bolzano-Weierstrass
pôle —	d'unicité de Cantor280
Simultanée (réalisation —)	de Casorati-Weierstrass
Singularité	de Cauchy-Lipschitz
0	v .
à l'infini	central limite
	de convergence dominée
essentielle	de de Moivre-Laplace547 de Dini47
Sinus cardinal $\operatorname{sinc}(x)$ 288, 294, 296	de Dirichlet
Sinus intégral $Si(x)$	
Sommes	d'Egorov
de Fejér	de Fejér
Sous-espace vectoriel engendré	fondamental de l'analyse
Sous-groupe	de Fubini pour les séries
Spectre Spectre	de Fubini-Lebesgue
continu	de Fubini-Tonelli
discret	de Green
d'une fonction	de Green-Riemann113
de puissance	de Hellinger-Toeplitz 405
repliement du —	de Helmholtz352
résiduel	d'inversion globale571
Sphère de Riemann	d'inversion locale
Sphériques (harmoniques —)	de Liouville
Spineur	du maximum113, 148
Spirale de Fresnel/Cornu	de la moyenne
Stationnaire (méthode de la phase —)154	de Poincaré
Stefan (loi de —)	du point fixe
Stirling (formule de —)	du rayon
Stokes George	de représentation
Stokes	des résidus
formule de —	de Riemann
phénomène de —	de Riesz393
Subdivision	de Riesz-Fischer
Subordonnée (norme —)	de Schwarz-Christoffel 165
Succès (loi du premier —)500	de Schwarz450, 573
Suite de fonctions de Dirac 88, 176, 230	de Shannon
Support d'une distribution	spectral
Surface de Riemann	spectral généralisé407
Sylvester (loi d'inertie de —)	de Stokes
Symétrique	de Sylvester (loi d'inertie) 427
endomorphisme —	de transfert
groupe — voir Cyclique	de van Cittert-Zernike365
opérateur —404	de Weierstrass
Système	de Wiener-Khintchine
causal	Total
complet d'événements	écran —
complet induit par une v. a	système —
	Transfert fonction de —
quasi-complet d'événements	formule de —
votar	1011111111 uc

Transformée
de Fourier
de III311
d'une convolution299
dans \mathbf{R}^n
de δ
d'une distribution
d'une fonction
d'une gaussienne302
de H
inverse
de la lorentzienne $1/(1+t^2)$ 97
en sinus ou cosinus
$ \text{de Vp}(1/x) \dots \dots$
de Hilbert
de Laplace331, 331–347
en z
Transformation
d'Abel
conforme
de Lorentz
de Schwarz-Christoffel
Translatée d'une distribution
Transposée d'une distribution
Transverses (champs —)
Tribu
—s indépendantes 491 , 519
engendrée
par une variable aléatoire519
Triplet de Gelfand
Triviale (représentation —) 467
U
U Uniforme (loi —)
Uniforme (loi —)
$ \begin{array}{cccc} \text{Uniforme (loi $-$)} & & & 505 \\ \text{Unitaire (matrice $-$)} & & & 472 \\ & & & & & \\ \hline & & & & & \\ \hline & & & & &$
Uniforme (loi —)
Uniforme (loi —)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ol	z	a	n	ıc)-	-	_		

Weierstrass	
théorème de Bolzano- — 56	61
théorème de —	46
Weierstrass Karl	3(
Wiener-Khintchine (théorème de —) 36	62
Wronskien	36
Υ	
Young (formule de Taylor-—)	
Yukawa (potentiel de —)46	3:

W

Z

Mis en page avec $L\!\!\!^{A}\!T_{\!E}\!X$ sous Linux

Affinages typographiques Paul Pichaureau Jean-Yves Février

Figures réalisées avec TikZ, Python, Scilab et Xfig